#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; namespace HeuristicLab.Problems.DataAnalysis { public class OnlinePearsonsRCalculator : DeepCloneable, IOnlineCalculator { private OnlineCovarianceCalculator covCalculator = new OnlineCovarianceCalculator(); private OnlineMeanAndVarianceCalculator sxCalculator = new OnlineMeanAndVarianceCalculator(); private OnlineMeanAndVarianceCalculator syCalculator = new OnlineMeanAndVarianceCalculator(); public double R { get { double xVar = sxCalculator.PopulationVariance; double yVar = syCalculator.PopulationVariance; if (xVar.IsAlmost(0.0) || yVar.IsAlmost(0.0)) { return 0.0; } else { var r = covCalculator.Covariance / (Math.Sqrt(xVar) * Math.Sqrt(yVar)); if (r < -1.0) r = -1.0; else if (r > 1.0) r = 1.0; return r; } } } public OnlinePearsonsRCalculator() { } protected OnlinePearsonsRCalculator(OnlinePearsonsRCalculator original, Cloner cloner) : base(original, cloner) { covCalculator = cloner.Clone(original.covCalculator); sxCalculator = cloner.Clone(original.sxCalculator); syCalculator = cloner.Clone(original.syCalculator); } public override IDeepCloneable Clone(Cloner cloner) { return new OnlinePearsonsRCalculator(this, cloner); } #region IOnlineCalculator Members public OnlineCalculatorError ErrorState { get { return covCalculator.ErrorState | sxCalculator.PopulationVarianceErrorState | syCalculator.PopulationVarianceErrorState; } } public double Value { get { return R; } } public void Reset() { covCalculator.Reset(); sxCalculator.Reset(); syCalculator.Reset(); } public void Add(double x, double y) { // no need to check validity of values explicitly here as it is checked in all three evaluators covCalculator.Add(x, y); sxCalculator.Add(x); syCalculator.Add(y); } #endregion public static double Calculate(IEnumerable first, IEnumerable second, out OnlineCalculatorError errorState) { IEnumerator firstEnumerator = first.GetEnumerator(); IEnumerator secondEnumerator = second.GetEnumerator(); var calculator = new OnlinePearsonsRCalculator(); // always move forward both enumerators (do not use short-circuit evaluation!) while (firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) { double original = firstEnumerator.Current; double estimated = secondEnumerator.Current; calculator.Add(original, estimated); if (calculator.ErrorState != OnlineCalculatorError.None) break; } // check if both enumerators are at the end to make sure both enumerations have the same length if (calculator.ErrorState == OnlineCalculatorError.None && (secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) { throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); } else { errorState = calculator.ErrorState; return calculator.R; } } } }