#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.DataAnalysis {
public class OnlinePearsonsRCalculator : DeepCloneable, IOnlineCalculator {
private OnlineCovarianceCalculator covCalculator = new OnlineCovarianceCalculator();
private OnlineMeanAndVarianceCalculator sxCalculator = new OnlineMeanAndVarianceCalculator();
private OnlineMeanAndVarianceCalculator syCalculator = new OnlineMeanAndVarianceCalculator();
public double R {
get {
double xVar = sxCalculator.PopulationVariance;
double yVar = syCalculator.PopulationVariance;
if (xVar.IsAlmost(0.0) || yVar.IsAlmost(0.0)) {
return 0.0;
} else {
var r = covCalculator.Covariance / (Math.Sqrt(xVar) * Math.Sqrt(yVar));
if (r < -1.0) r = -1.0;
else if (r > 1.0) r = 1.0;
return r;
}
}
}
public OnlinePearsonsRCalculator() { }
protected OnlinePearsonsRCalculator(OnlinePearsonsRCalculator original, Cloner cloner)
: base(original, cloner) {
covCalculator = cloner.Clone(original.covCalculator);
sxCalculator = cloner.Clone(original.sxCalculator);
syCalculator = cloner.Clone(original.syCalculator);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OnlinePearsonsRCalculator(this, cloner);
}
#region IOnlineCalculator Members
public OnlineCalculatorError ErrorState {
get { return covCalculator.ErrorState | sxCalculator.PopulationVarianceErrorState | syCalculator.PopulationVarianceErrorState; }
}
public double Value {
get { return R; }
}
public void Reset() {
covCalculator.Reset();
sxCalculator.Reset();
syCalculator.Reset();
}
public void Add(double x, double y) {
// no need to check validity of values explicitly here as it is checked in all three evaluators
covCalculator.Add(x, y);
sxCalculator.Add(x);
syCalculator.Add(y);
}
#endregion
public static double Calculate(IEnumerable first, IEnumerable second, out OnlineCalculatorError errorState) {
IEnumerator firstEnumerator = first.GetEnumerator();
IEnumerator secondEnumerator = second.GetEnumerator();
var calculator = new OnlinePearsonsRCalculator();
// always move forward both enumerators (do not use short-circuit evaluation!)
while (firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {
double original = firstEnumerator.Current;
double estimated = secondEnumerator.Current;
calculator.Add(original, estimated);
if (calculator.ErrorState != OnlineCalculatorError.None) break;
}
// check if both enumerators are at the end to make sure both enumerations have the same length
if (calculator.ErrorState == OnlineCalculatorError.None &&
(secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {
throw new ArgumentException("Number of elements in first and second enumeration doesn't match.");
} else {
errorState = calculator.ErrorState;
return calculator.R;
}
}
}
}