#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; namespace HeuristicLab.Problems.DataAnalysis { public class OnlineAccuracyCalculator : DeepCloneable, IOnlineCalculator { private int correctlyClassified; private int n; public double Accuracy { get { return correctlyClassified / (double)n; } } public OnlineAccuracyCalculator() { Reset(); } protected OnlineAccuracyCalculator(OnlineAccuracyCalculator original, Cloner cloner) : base(original, cloner) { correctlyClassified = original.correctlyClassified; n = original.n; errorState = original.errorState; } public override IDeepCloneable Clone(Cloner cloner) { return new OnlineAccuracyCalculator(this, cloner); } #region IOnlineCalculator Members private OnlineCalculatorError errorState; public OnlineCalculatorError ErrorState { get { return errorState; } } public double Value { get { return Accuracy; } } public void Reset() { n = 0; correctlyClassified = 0; errorState = OnlineCalculatorError.InsufficientElementsAdded; } public void Add(double original, double estimated) { // ignore cases where original is NaN completly if (!double.IsNaN(original)) { // increment number of observed samples n++; if (original.IsAlmost(estimated)) { // original = estimated = +Inf counts as correctly classified // original = estimated = -Inf counts as correctly classified correctlyClassified++; } errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1 } } #endregion public static double Calculate(IEnumerable originalValues, IEnumerable estimatedValues, out OnlineCalculatorError errorState) { IEnumerator originalEnumerator = originalValues.GetEnumerator(); IEnumerator estimatedEnumerator = estimatedValues.GetEnumerator(); OnlineAccuracyCalculator accuracyCalculator = new OnlineAccuracyCalculator(); // always move forward both enumerators (do not use short-circuit evaluation!) while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { double original = originalEnumerator.Current; double estimated = estimatedEnumerator.Current; accuracyCalculator.Add(original, estimated); if (accuracyCalculator.ErrorState != OnlineCalculatorError.None) break; } // check if both enumerators are at the end to make sure both enumerations have the same length if (accuracyCalculator.ErrorState == OnlineCalculatorError.None && (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match."); } else { errorState = accuracyCalculator.ErrorState; return accuracyCalculator.Accuracy; } } } }