1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Problems.DataAnalysis.OnlineCalculators {
|
---|
26 | public class MatthewsCorrelationCoefficientCalculator {
|
---|
27 | public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) {
|
---|
28 | var confusionMatrix = ConfusionMatrixCalculator.Calculate(originalValues, estimatedValues, out errorState);
|
---|
29 | if (!errorState.Equals(OnlineCalculatorError.None)) {
|
---|
30 | return double.NaN;
|
---|
31 | }
|
---|
32 | return CalculateMCC(confusionMatrix);
|
---|
33 | }
|
---|
34 |
|
---|
35 | private static double CalculateMCC(double[,] confusionMatrix) {
|
---|
36 | if (confusionMatrix.GetLength(0) != confusionMatrix.GetLength(1)) {
|
---|
37 | throw new ArgumentException("Confusion matrix is not a square matrix.");
|
---|
38 | }
|
---|
39 |
|
---|
40 | int classes = confusionMatrix.GetLength(0);
|
---|
41 | double numerator = 0;
|
---|
42 | for (int k = 0; k < classes; k++) {
|
---|
43 | for (int l = 0; l < classes; l++) {
|
---|
44 | for (int m = 0; m < classes; m++) {
|
---|
45 | numerator += confusionMatrix[k, k] * confusionMatrix[m, l] - confusionMatrix[l, k] * confusionMatrix[k, m];
|
---|
46 | }
|
---|
47 | }
|
---|
48 | }
|
---|
49 |
|
---|
50 | double denominator1 = 0;
|
---|
51 | double denominator2 = 0;
|
---|
52 | for (int k = 0; k < classes; k++) {
|
---|
53 | double clk = 0;
|
---|
54 | double cgf = 0;
|
---|
55 | double ckl = 0;
|
---|
56 | double cfg = 0;
|
---|
57 | for (int l = 0; l < classes; l++) {
|
---|
58 | clk += confusionMatrix[l, k];
|
---|
59 | ckl += confusionMatrix[k, l];
|
---|
60 | }
|
---|
61 | for (int f = 0; f < classes; f++) {
|
---|
62 | if (f == k) {
|
---|
63 | continue;
|
---|
64 | }
|
---|
65 | for (int g = 0; g < classes; g++) {
|
---|
66 | cgf += confusionMatrix[g, f];
|
---|
67 | cfg += confusionMatrix[f, g];
|
---|
68 | }
|
---|
69 | }
|
---|
70 | denominator1 += clk * cgf;
|
---|
71 | denominator2 += ckl * cfg;
|
---|
72 | }
|
---|
73 | denominator1 = Math.Sqrt(denominator1);
|
---|
74 | denominator2 = Math.Sqrt(denominator2);
|
---|
75 |
|
---|
76 | return numerator / (denominator1 * denominator2);
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|