#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HEAL.Attic;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents classification solutions that contain an ensemble of multiple classification models
///
[StorableType("0F720A40-5CC2-4E2B-8D4E-CCAD8EB56E43")]
[Item("ClassificationEnsembleModel", "A classification model that contains an ensemble of multiple classification models")]
public class ClassificationEnsembleModel : ClassificationModel, IClassificationEnsembleModel {
public override IEnumerable VariablesUsedForPrediction {
get { return models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x); }
}
[Storable]
private List models;
public IEnumerable Models {
get { return new List(models); }
}
[StorableConstructor]
protected ClassificationEnsembleModel(StorableConstructorFlag _) : base(_) { }
protected ClassificationEnsembleModel(ClassificationEnsembleModel original, Cloner cloner)
: base(original, cloner) {
this.models = original.Models.Select(m => cloner.Clone(m)).ToList();
}
public ClassificationEnsembleModel() : this(Enumerable.Empty()) { }
public ClassificationEnsembleModel(IEnumerable models)
: base(string.Empty) {
this.name = ItemName;
this.description = ItemDescription;
this.models = new List(models);
if (this.models.Any()) this.TargetVariable = this.models.First().TargetVariable;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ClassificationEnsembleModel(this, cloner);
}
public void Add(IClassificationModel model) {
if (string.IsNullOrEmpty(TargetVariable)) TargetVariable = model.TargetVariable;
models.Add(model);
}
public void Remove(IClassificationModel model) {
models.Remove(model);
if (!models.Any()) TargetVariable = string.Empty;
}
public IEnumerable> GetEstimatedClassValueVectors(IDataset dataset, IEnumerable rows) {
var estimatedValuesEnumerators = (from model in models
select model.GetEstimatedClassValues(dataset, rows).GetEnumerator())
.ToList();
while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
yield return from enumerator in estimatedValuesEnumerators
select enumerator.Current;
}
}
public override IEnumerable GetEstimatedClassValues(IDataset dataset, IEnumerable rows) {
foreach (var estimatedValuesVector in GetEstimatedClassValueVectors(dataset, rows)) {
// return the class which is most often occuring
yield return
estimatedValuesVector
.GroupBy(x => x)
.OrderBy(g => -g.Count())
.Select(g => g.Key)
.First();
}
}
public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
return new ClassificationEnsembleSolution(models, new ClassificationEnsembleProblemData(problemData));
}
}
}