[5662] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5662] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[16565] | 26 | using HEAL.Attic;
|
---|
[5662] | 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 29 | /// <summary>
|
---|
| 30 | /// Represents classification solutions that contain an ensemble of multiple classification models
|
---|
| 31 | /// </summary>
|
---|
[16565] | 32 | [StorableType("0F720A40-5CC2-4E2B-8D4E-CCAD8EB56E43")]
|
---|
[5662] | 33 | [Item("ClassificationEnsembleModel", "A classification model that contains an ensemble of multiple classification models")]
|
---|
[13941] | 34 | public class ClassificationEnsembleModel : ClassificationModel, IClassificationEnsembleModel {
|
---|
| 35 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[13921] | 36 | get { return models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x); }
|
---|
| 37 | }
|
---|
[5662] | 38 |
|
---|
| 39 | [Storable]
|
---|
| 40 | private List<IClassificationModel> models;
|
---|
| 41 | public IEnumerable<IClassificationModel> Models {
|
---|
| 42 | get { return new List<IClassificationModel>(models); }
|
---|
| 43 | }
|
---|
[6239] | 44 |
|
---|
[5662] | 45 | [StorableConstructor]
|
---|
[16565] | 46 | protected ClassificationEnsembleModel(StorableConstructorFlag _) : base(_) { }
|
---|
[5662] | 47 | protected ClassificationEnsembleModel(ClassificationEnsembleModel original, Cloner cloner)
|
---|
| 48 | : base(original, cloner) {
|
---|
| 49 | this.models = original.Models.Select(m => cloner.Clone(m)).ToList();
|
---|
| 50 | }
|
---|
[6666] | 51 |
|
---|
| 52 | public ClassificationEnsembleModel() : this(Enumerable.Empty<IClassificationModel>()) { }
|
---|
[5662] | 53 | public ClassificationEnsembleModel(IEnumerable<IClassificationModel> models)
|
---|
[13941] | 54 | : base(string.Empty) {
|
---|
[5662] | 55 | this.name = ItemName;
|
---|
| 56 | this.description = ItemDescription;
|
---|
[5777] | 57 | this.models = new List<IClassificationModel>(models);
|
---|
[13941] | 58 |
|
---|
| 59 | if (this.models.Any()) this.TargetVariable = this.models.First().TargetVariable;
|
---|
[5662] | 60 | }
|
---|
| 61 |
|
---|
| 62 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 63 | return new ClassificationEnsembleModel(this, cloner);
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[6520] | 66 | public void Add(IClassificationModel model) {
|
---|
[13941] | 67 | if (string.IsNullOrEmpty(TargetVariable)) TargetVariable = model.TargetVariable;
|
---|
[6520] | 68 | models.Add(model);
|
---|
| 69 | }
|
---|
[6613] | 70 | public void Remove(IClassificationModel model) {
|
---|
| 71 | models.Remove(model);
|
---|
[13941] | 72 | if (!models.Any()) TargetVariable = string.Empty;
|
---|
[6613] | 73 | }
|
---|
[5662] | 74 |
|
---|
[12509] | 75 | public IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(IDataset dataset, IEnumerable<int> rows) {
|
---|
[5662] | 76 | var estimatedValuesEnumerators = (from model in models
|
---|
| 77 | select model.GetEstimatedClassValues(dataset, rows).GetEnumerator())
|
---|
| 78 | .ToList();
|
---|
| 79 |
|
---|
| 80 | while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
|
---|
| 81 | yield return from enumerator in estimatedValuesEnumerators
|
---|
| 82 | select enumerator.Current;
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 |
|
---|
[13941] | 87 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[5662] | 88 | foreach (var estimatedValuesVector in GetEstimatedClassValueVectors(dataset, rows)) {
|
---|
| 89 | // return the class which is most often occuring
|
---|
| 90 | yield return
|
---|
| 91 | estimatedValuesVector
|
---|
| 92 | .GroupBy(x => x)
|
---|
| 93 | .OrderBy(g => -g.Count())
|
---|
| 94 | .Select(g => g.Key)
|
---|
| 95 | .First();
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 |
|
---|
[13941] | 99 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
[8528] | 100 | return new ClassificationEnsembleSolution(models, new ClassificationEnsembleProblemData(problemData));
|
---|
[6604] | 101 | }
|
---|
[13941] | 102 |
|
---|
| 103 |
|
---|
[5662] | 104 | }
|
---|
| 105 | }
|
---|