#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using HeuristicLab.Common;
using HeuristicLab.MainForm.WindowsForms;
using HeuristicLab.Visualization.ChartControlsExtensions;
namespace HeuristicLab.Problems.DataAnalysis.Views {
public partial class FactorPartialDependencePlot : UserControl, IPartialDependencePlot {
private ModifiableDataset sharedFixedVariables; // used for synchronising variable values between charts
private ModifiableDataset internalDataset; // holds the x values for each point drawn
private CancellationTokenSource cancelCurrentRecalculateSource;
private readonly List solutions;
private readonly Dictionary seriesCache;
private readonly Dictionary ciSeriesCache;
#region Properties
public string XAxisTitle {
get { return chart.ChartAreas[0].AxisX.Title; }
set { chart.ChartAreas[0].AxisX.Title = value; }
}
public string YAxisTitle {
get { return chart.ChartAreas[0].AxisY.Title; }
set { chart.ChartAreas[0].AxisY.Title = value; }
}
public bool ShowLegend {
get { return chart.Legends[0].Enabled; }
set { chart.Legends[0].Enabled = value; }
}
public bool ShowCursor {
get { return chart.Annotations[0].Visible; }
set {
chart.Annotations[0].Visible = value;
if (!value) chart.Titles[0].Text = string.Empty;
}
}
private int yAxisTicks = 5;
public int YAxisTicks {
get { return yAxisTicks; }
set {
if (value != yAxisTicks) {
yAxisTicks = value;
SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
RecalculateInternalDataset();
}
}
}
private double? fixedYAxisMin;
public double? FixedYAxisMin {
get { return fixedYAxisMin; }
set {
if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) {
fixedYAxisMin = value;
SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
}
}
}
private double? fixedYAxisMax;
public double? FixedYAxisMax {
get { return fixedYAxisMax; }
set {
if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) {
fixedYAxisMax = value;
SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
}
}
}
private string freeVariable;
public string FreeVariable {
get { return freeVariable; }
set {
if (value == freeVariable) return;
if (solutions.Any(s => !s.ProblemData.Dataset.StringVariables.Contains(value))) {
throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
}
freeVariable = value;
RecalculateInternalDataset();
}
}
private double yMin;
public double YMin {
get { return yMin; }
}
private double yMax;
public double YMax {
get { return yMax; }
}
public bool IsZoomed {
get { return chart.ChartAreas[0].AxisX.ScaleView.IsZoomed; }
}
internal ElementPosition InnerPlotPosition {
get { return chart.ChartAreas[0].InnerPlotPosition; }
}
#endregion
private List variableValues;
public event EventHandler ChartPostPaint;
public FactorPartialDependencePlot() {
InitializeComponent();
solutions = new List();
seriesCache = new Dictionary();
ciSeriesCache = new Dictionary();
// Configure axis
chart.CustomizeAllChartAreas();
chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = false;
chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = false;
chart.ChartAreas[0].Axes.ToList().ForEach(x => { x.ScaleView.Zoomable = false; });
Disposed += Control_Disposed;
}
private void Control_Disposed(object sender, EventArgs e) {
if (cancelCurrentRecalculateSource != null)
cancelCurrentRecalculateSource.Cancel();
}
public void Configure(IEnumerable solutions, ModifiableDataset sharedFixedVariables, string freeVariable, IList variableValues, bool initializeAxisRanges = true) {
if (!SolutionsCompatible(solutions))
throw new ArgumentException("Solutions are not compatible with the problem data.");
this.freeVariable = freeVariable;
this.variableValues = new List(variableValues);
this.solutions.Clear();
this.solutions.AddRange(solutions);
// add an event such that whenever a value is changed in the shared dataset,
// this change is reflected in the internal dataset (where the value becomes a whole column)
if (this.sharedFixedVariables != null) {
this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
this.sharedFixedVariables.Reset -= sharedFixedVariables_Reset;
}
this.sharedFixedVariables = sharedFixedVariables;
this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
this.sharedFixedVariables.Reset += sharedFixedVariables_Reset;
RecalculateInternalDataset();
chart.Series.Clear();
seriesCache.Clear();
ciSeriesCache.Clear();
foreach (var solution in this.solutions) {
var series = CreateSeries(solution);
seriesCache.Add(solution, series.Item1);
if (series.Item2 != null)
ciSeriesCache.Add(solution, series.Item2);
}
InitSeriesData();
OrderAndColorSeries();
}
public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) {
if (IsDisposed
|| sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable)
|| !variableValues.Any())
return;
calculationPendingTimer.Start();
// cancel previous recalculate call
if (cancelCurrentRecalculateSource != null)
cancelCurrentRecalculateSource.Cancel();
cancelCurrentRecalculateSource = new CancellationTokenSource();
var cancellationToken = cancelCurrentRecalculateSource.Token;
// Update series
try {
var limits = await UpdateAllSeriesDataAsync(cancellationToken);
chart.Invalidate();
yMin = limits.Lower;
yMax = limits.Upper;
// Set y-axis
if (resetYAxis)
SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
calculationPendingTimer.Stop();
calculationPendingLabel.Visible = false;
if (updateOnFinish)
Update();
} catch (OperationCanceledException) {
} catch (AggregateException ae) {
if (!ae.InnerExceptions.Any(e => e is OperationCanceledException))
throw;
}
}
public void UpdateTitlePosition() {
var title = chart.Titles[0];
var plotArea = InnerPlotPosition;
title.Visible = plotArea.Width != 0;
title.Position.X = plotArea.X + (plotArea.Width / 2);
}
private static void SetupAxis(EnhancedChart chart, Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) {
//guard if only one distinct value is present
if (minValue.IsAlmost(maxValue)) {
minValue = minValue - 0.5;
maxValue = minValue + 0.5;
}
double axisMin, axisMax, axisInterval;
ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval);
axis.Minimum = fixedAxisMin ?? axisMin;
axis.Maximum = fixedAxisMax ?? axisMax;
axis.Interval = (axis.Maximum - axis.Minimum) / ticks;
chart.ChartAreas[0].RecalculateAxesScale();
}
private void RecalculateInternalDataset() {
if (sharedFixedVariables == null)
return;
var factorValues = new List(variableValues);
var variables = sharedFixedVariables.VariableNames.ToList();
var values = new List();
foreach (var varName in variables) {
if (varName == FreeVariable) {
values.Add(factorValues);
} else if (sharedFixedVariables.VariableHasType(varName)) {
values.Add(Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(varName, 0), factorValues.Count).ToList());
} else if (sharedFixedVariables.VariableHasType(varName)) {
values.Add(Enumerable.Repeat(sharedFixedVariables.GetStringValue(varName, 0), factorValues.Count).ToList());
}
}
internalDataset = new ModifiableDataset(variables, values);
}
private Tuple CreateSeries(IRegressionSolution solution) {
var series = new Series {
ChartType = SeriesChartType.Column,
Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution),
XValueType = System.Windows.Forms.DataVisualization.Charting.ChartValueType.String
};
series.LegendText = series.Name;
Series confidenceIntervalSeries = null;
confidenceIntervalSeries = new Series {
ChartType = SeriesChartType.BoxPlot,
XValueType = System.Windows.Forms.DataVisualization.Charting.ChartValueType.String,
Color = Color.Black,
YValuesPerPoint = 5,
Name = "95% Conf. Interval " + series.Name,
IsVisibleInLegend = false
};
return Tuple.Create(series, confidenceIntervalSeries);
}
private void OrderAndColorSeries() {
chart.SuspendRepaint();
chart.Series.Clear();
// Add mean series for applying palette colors
foreach (var solution in solutions) {
chart.Series.Add(seriesCache[solution]);
}
chart.Palette = ChartColorPalette.BrightPastel;
chart.ApplyPaletteColors();
chart.Palette = ChartColorPalette.None;
// Add confidence interval series after its coresponding series for correct z index
foreach (var solution in solutions) {
Series ciSeries;
if (ciSeriesCache.TryGetValue(solution, out ciSeries)) {
int idx = chart.Series.IndexOf(seriesCache[solution]);
chart.Series.Insert(idx + 1, ciSeries);
}
}
chart.ResumeRepaint(true);
}
private async Task UpdateAllSeriesDataAsync(CancellationToken cancellationToken) {
var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken));
double min = double.MaxValue, max = double.MinValue;
foreach (var update in updateTasks) {
var limit = await update;
if (limit.Lower < min) min = limit.Lower;
if (limit.Upper > max) max = limit.Upper;
}
return new DoubleLimit(min, max);
}
private Task UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) {
return Task.Run(() => {
var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
double min = double.MaxValue, max = double.MinValue;
var series = seriesCache[solution];
for (int i = 0; i < variableValues.Count; i++) {
series.Points[i].SetValueXY(variableValues[i], yvalues[i]);
if (yvalues[i] < min) min = yvalues[i];
if (yvalues[i] > max) max = yvalues[i];
}
cancellationToken.ThrowIfCancellationRequested();
var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
if (confidenceBoundSolution != null) {
var confidenceIntervalSeries = ciSeriesCache[solution];
var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
for (int i = 0; i < variableValues.Count; i++) {
var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]);
var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]);
confidenceIntervalSeries.Points[i].SetValueXY(variableValues[i], lower, upper, yvalues[i], yvalues[i], yvalues[i]);
if (lower < min) min = lower;
if (upper > max) max = upper;
}
}
cancellationToken.ThrowIfCancellationRequested();
return new DoubleLimit(min, max);
}, cancellationToken);
}
private void InitSeriesData() {
if (internalDataset == null)
return;
foreach (var solution in solutions)
InitSeriesData(solution, variableValues);
}
private void InitSeriesData(IRegressionSolution solution, IList values) {
var series = seriesCache[solution];
series.Points.SuspendUpdates();
series.Points.Clear();
for (int i = 0; i < values.Count; i++) {
series.Points.AddXY(values[i], 0.0);
series.Points.Last().ToolTip = values[i];
}
UpdateAllSeriesStyles(variableValues.IndexOf(sharedFixedVariables.GetStringValue(FreeVariable, 0)));
series.Points.ResumeUpdates();
Series confidenceIntervalSeries;
if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) {
confidenceIntervalSeries.Points.SuspendUpdates();
confidenceIntervalSeries.Points.Clear();
for (int i = 0; i < values.Count; i++)
confidenceIntervalSeries.Points.AddXY(values[i], 0.0, 0.0, 0.0, 0.0, 0.0);
confidenceIntervalSeries.Points.ResumeUpdates();
}
}
public async Task AddSolutionAsync(IRegressionSolution solution) {
if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
throw new ArgumentException("The solution is not compatible with the problem data.");
if (solutions.Contains(solution))
return;
solutions.Add(solution);
var series = CreateSeries(solution);
seriesCache.Add(solution, series.Item1);
if (series.Item2 != null)
ciSeriesCache.Add(solution, series.Item2);
InitSeriesData(solution, variableValues);
OrderAndColorSeries();
await RecalculateAsync();
var args = new EventArgs(solution);
OnSolutionAdded(this, args);
}
public async Task RemoveSolutionAsync(IRegressionSolution solution) {
if (!solutions.Remove(solution))
return;
seriesCache.Remove(solution);
ciSeriesCache.Remove(solution);
await RecalculateAsync();
var args = new EventArgs(solution);
OnSolutionRemoved(this, args);
}
private static bool SolutionsCompatible(IEnumerable solutions) {
var refSolution = solutions.First();
var refSolVars = refSolution.ProblemData.Dataset.VariableNames;
foreach (var solution in solutions.Skip(1)) {
var variables1 = solution.ProblemData.Dataset.VariableNames;
if (!variables1.All(refSolVars.Contains))
return false;
foreach (var factorVar in variables1.Where(solution.ProblemData.Dataset.VariableHasType)) {
var distinctVals = refSolution.ProblemData.Dataset.GetStringValues(factorVar).Distinct();
if (solution.ProblemData.Dataset.GetStringValues(factorVar).Any(val => !distinctVals.Contains(val))) return false;
}
}
return true;
}
#region Events
public event EventHandler> SolutionAdded;
public void OnSolutionAdded(object sender, EventArgs args) {
var added = SolutionAdded;
if (added == null) return;
added(sender, args);
}
public event EventHandler> SolutionRemoved;
public void OnSolutionRemoved(object sender, EventArgs args) {
var removed = SolutionRemoved;
if (removed == null) return;
removed(sender, args);
}
public event EventHandler VariableValueChanged;
public void OnVariableValueChanged(object sender, EventArgs args) {
var changed = VariableValueChanged;
if (changed == null) return;
changed(sender, args);
}
public event EventHandler ZoomChanged;
public void OnZoomChanged(object sender, EventArgs args) {
var changed = ZoomChanged;
if (changed == null) return;
changed(sender, args);
}
private void sharedFixedVariables_ItemChanged(object o, EventArgs e) {
if (o != sharedFixedVariables) return;
var variables = sharedFixedVariables.VariableNames.ToList();
var rowIndex = e.Value;
var columnIndex = e.Value2;
var variableName = variables[columnIndex];
if (variableName == FreeVariable) return;
if (internalDataset.VariableHasType(variableName)) {
var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
var values = new List(Enumerable.Repeat(v, internalDataset.Rows));
internalDataset.ReplaceVariable(variableName, values);
} else if (internalDataset.VariableHasType(variableName)) {
var v = sharedFixedVariables.GetStringValue(variableName, rowIndex);
var values = new List(Enumerable.Repeat(v, internalDataset.Rows));
internalDataset.ReplaceVariable(variableName, values);
} else {
// unsupported type
throw new NotSupportedException();
}
}
private void sharedFixedVariables_Reset(object sender, EventArgs e) {
var newValue = sharedFixedVariables.GetStringValue(FreeVariable, 0);
UpdateSelectedValue(newValue);
int idx = variableValues.IndexOf(newValue);
UpdateAllSeriesStyles(idx);
}
private async void chart_DragDrop(object sender, DragEventArgs e) {
var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
if (data != null) {
var solution = data as IRegressionSolution;
if (!solutions.Contains(solution))
await AddSolutionAsync(solution);
}
}
private void chart_DragEnter(object sender, DragEventArgs e) {
if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
e.Effect = DragDropEffects.None;
var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
var regressionSolution = data as IRegressionSolution;
if (regressionSolution != null) {
e.Effect = DragDropEffects.Copy;
}
}
private void calculationPendingTimer_Tick(object sender, EventArgs e) {
calculationPendingLabel.Visible = true;
Update();
}
private void chart_SelectionRangeChanged(object sender, CursorEventArgs e) {
OnZoomChanged(this, EventArgs.Empty);
}
private void chart_Resize(object sender, EventArgs e) {
UpdateTitlePosition();
}
private void chart_PostPaint(object sender, ChartPaintEventArgs e) {
if (ChartPostPaint != null)
ChartPostPaint(this, EventArgs.Empty);
}
#endregion
private void chart_MouseClick(object sender, MouseEventArgs e) {
var hitTestResult = chart.HitTest(e.X, e.Y, ChartElementType.DataPoint);
if (hitTestResult != null && hitTestResult.ChartElementType == ChartElementType.DataPoint) {
var series = hitTestResult.Series;
var dataPoint = (DataPoint)hitTestResult.Object;
var idx = series.Points.IndexOf(dataPoint);
UpdateSelectedValue(variableValues[idx]);
UpdateAllSeriesStyles(idx);
}
}
private void UpdateAllSeriesStyles(int selectedValueIndex) {
if (ShowCursor) {
chart.Titles[0].Text = FreeVariable + " : " + variableValues[selectedValueIndex];
chart.Update();
}
foreach (var s in seriesCache.Values) {
if (s.ChartType == SeriesChartType.Column)
for (int i = 0; i < s.Points.Count; i++) {
if (i != selectedValueIndex) {
s.Points[i].BorderDashStyle = ChartDashStyle.NotSet;
} else {
s.Points[i].BorderDashStyle = ChartDashStyle.Dash;
s.Points[i].BorderColor = Color.Red;
}
}
}
}
private void UpdateSelectedValue(string variableValue) {
sharedFixedVariables.SetVariableValue(variableValue, FreeVariable, 0);
OnVariableValueChanged(this, EventArgs.Empty);
}
}
}