#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Windows.Forms; using HeuristicLab.Data; using HeuristicLab.MainForm; using HeuristicLab.MainForm.WindowsForms; namespace HeuristicLab.Problems.DataAnalysis.Views { [View("Estimated Class Values")] [Content(typeof(IDiscriminantFunctionClassificationSolution))] public partial class DiscriminantFunctionClassificationSolutionEstimatedClassValuesView : ClassificationSolutionEstimatedClassValuesView { private const string TARGETVARIABLE_SERIES_NAME = "TargetVariable"; private const string ESTIMATEDVALUES_SERIES_NAME = "Estimated Class Values (all)"; private const string ESTIMATEDVALUES_TRAINING_SERIES_NAME = "Estimated Class Values (training)"; private const string ESTIMATEDVALUES_TEST_SERIES_NAME = "Estimated Class Values (test)"; private const string ESTIMATEDVALUES_DISCRIMINANT_SERIES_NAME = "Discriminant Values (all)"; public new IDiscriminantFunctionClassificationSolution Content { get { return (IDiscriminantFunctionClassificationSolution)base.Content; } set { base.Content = value; } } public DiscriminantFunctionClassificationSolutionEstimatedClassValuesView() : base() { InitializeComponent(); } protected override void UpdateEstimatedValues() { if (InvokeRequired) Invoke((Action)UpdateEstimatedValues); else { StringMatrix matrix = null; if (Content != null) { string[,] values = new string[Content.ProblemData.Dataset.Rows, 6]; double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray(); double[] estimatedClassValue = Content.EstimatedClassValues.ToArray(); double[] estimatedValues = Content.EstimatedValues.ToArray(); for (int row = 0; row < target.Length; row++) { values[row, 0] = row.ToString(); values[row, 1] = target[row].ToString(); values[row, 2] = estimatedClassValue[row].ToString(); values[row, 5] = estimatedValues[row].ToString(); } var estimatedTraining = Content.EstimatedTrainingClassValues.GetEnumerator(); estimatedTraining.MoveNext(); foreach (var trainingRow in Content.ProblemData.TrainingIndices) { values[trainingRow, 3] = estimatedTraining.Current.ToString(); estimatedTraining.MoveNext(); } var estimatedTest = Content.EstimatedTestClassValues.GetEnumerator(); estimatedTest.MoveNext(); foreach (var testRow in Content.ProblemData.TestIndices) { values[testRow, 4] = estimatedTest.Current.ToString(); estimatedTest.MoveNext(); } matrix = new StringMatrix(values); matrix.ColumnNames = new string[] { "Id", TARGETVARIABLE_SERIES_NAME, ESTIMATEDVALUES_SERIES_NAME, ESTIMATEDVALUES_TRAINING_SERIES_NAME, ESTIMATEDVALUES_TEST_SERIES_NAME, ESTIMATEDVALUES_DISCRIMINANT_SERIES_NAME }; matrix.SortableView = true; } matrixView.Content = matrix; } } } }