#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
public class SymbolicExpressionTreeBacktransformator : IModelBacktransformator {
private readonly ITransformationMapper transformationMapper;
public SymbolicExpressionTreeBacktransformator(ITransformationMapper transformationMapper) {
this.transformationMapper = transformationMapper;
}
public ISymbolicDataAnalysisModel Backtransform(ISymbolicDataAnalysisModel model, IEnumerable transformations, string targetVariable) {
var symbolicModel = (ISymbolicDataAnalysisModel)model.Clone();
foreach (var transformation in transformations.Reverse()) {
ApplyBacktransformation(transformation, symbolicModel.SymbolicExpressionTree, targetVariable);
}
return symbolicModel;
}
private void ApplyBacktransformation(ITransformation transformation, ISymbolicExpressionTree symbolicExpressionTree, string targetVariable) {
if (transformation.Column != targetVariable) {
var variableNodes = symbolicExpressionTree.IterateNodesBreadth()
.OfType()
.Where(n => n.VariableName == transformation.Column);
ApplyRegularBacktransformation(transformation, variableNodes);
} else if (!(transformation is CopyColumnTransformation)) {
ApplyInverseBacktransformation(transformation, symbolicExpressionTree);
}
}
private void ApplyRegularBacktransformation(ITransformation transformation, IEnumerable variableNodes) {
foreach (var variableNode in variableNodes) {
// generate new subtrees because same subtree cannot be added more than once
var transformationTree = transformationMapper.GenerateModel(transformation);
SwapVariableWithTree(variableNode, transformationTree);
}
}
private void ApplyInverseBacktransformation(ITransformation transformation, ISymbolicExpressionTree symbolicExpressionTree) {
var startSymbol = symbolicExpressionTree.Root.GetSubtree(0);
var modelTree = startSymbol.GetSubtree(0);
startSymbol.RemoveSubtree(0);
var transformationTree = transformationMapper.GenerateInverseModel(transformation);
var variableNode = transformationTree.IterateNodesBreadth()
.OfType()
.Single(n => n.VariableName == transformation.Column);
SwapVariableWithTree(variableNode, modelTree);
startSymbol.AddSubtree(transformationTree);
}
private void SwapVariableWithTree(VariableTreeNode variableNode, ISymbolicExpressionTreeNode treeNode) {
var parent = variableNode.Parent;
int index = parent.IndexOfSubtree(variableNode);
parent.RemoveSubtree(index);
if (!variableNode.Weight.IsAlmost(1.0))
treeNode = CreateNodeFromWeight(treeNode, variableNode);
parent.InsertSubtree(index, treeNode);
}
private ISymbolicExpressionTreeNode CreateNodeFromWeight(ISymbolicExpressionTreeNode transformationTree, VariableTreeNode variableNode) {
var multiplicationNode = new SymbolicExpressionTreeNode(new Multiplication());
multiplicationNode.AddSubtree(new ConstantTreeNode(new Constant()) { Value = variableNode.Weight });
multiplicationNode.AddSubtree(transformationTree);
return multiplicationNode;
}
}
}