#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Runtime.InteropServices; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [StorableClass] [Item("SymbolicDataAnalysisExpressionTreeNativeInterpreter", "An interpreter that wraps a native dll")] public class SymbolicDataAnalysisExpressionTreeNativeInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter { private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions"; #region parameters public IFixedValueParameter EvaluatedSolutionsParameter { get { return (IFixedValueParameter)Parameters[EvaluatedSolutionsParameterName]; } } #endregion #region properties public int EvaluatedSolutions { get { return EvaluatedSolutionsParameter.Value.Value; } set { EvaluatedSolutionsParameter.Value.Value = value; } } #endregion public void ClearState() { } public SymbolicDataAnalysisExpressionTreeNativeInterpreter() { Parameters.Add(new FixedValueParameter(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); } [StorableConstructor] protected SymbolicDataAnalysisExpressionTreeNativeInterpreter(bool deserializing) : base(deserializing) { } protected SymbolicDataAnalysisExpressionTreeNativeInterpreter(SymbolicDataAnalysisExpressionTreeNativeInterpreter original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionTreeNativeInterpreter(this, cloner); } private NativeInstruction[] Compile(ISymbolicExpressionTree tree, Func opCodeMapper) { var root = tree.Root.GetSubtree(0).GetSubtree(0); var code = new NativeInstruction[root.GetLength()]; if (root.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)"); code[0] = new NativeInstruction { narg = (ushort)root.SubtreeCount, opcode = opCodeMapper(root) }; int c = 1, i = 0; foreach (var node in root.IterateNodesBreadth()) { for (int j = 0; j < node.SubtreeCount; ++j) { var s = node.GetSubtree(j); if (s.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)"); code[c + j] = new NativeInstruction { narg = (ushort)s.SubtreeCount, opcode = opCodeMapper(s) }; } if (node is VariableTreeNode variable) { code[i].weight = variable.Weight; code[i].data = cachedData[variable.VariableName].AddrOfPinnedObject(); } else if (node is ConstantTreeNode constant) { code[i].value = constant.Value; } code[i].childIndex = c; c += node.SubtreeCount; ++i; } return code; } private readonly object syncRoot = new object(); [ThreadStatic] private static Dictionary cachedData; public IEnumerable GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows) { if (!rows.Any()) return Enumerable.Empty(); lock (syncRoot) { EvaluatedSolutions++; // increment the evaluated solutions counter } if (cachedData == null) { InitCache(dataset); } var code = Compile(tree, OpCodes.MapSymbolToOpCode); var rowsArray = rows.ToArray(); var result = new double[rowsArray.Length]; NativeWrapper.GetValuesVectorized(code, code.Length, rowsArray, rowsArray.Length, result); return result; } private void InitCache(IDataset dataset) { cachedData = new Dictionary(); foreach (var v in dataset.DoubleVariables) { var values = dataset.GetDoubleValues(v).ToArray(); var gch = GCHandle.Alloc(values, GCHandleType.Pinned); cachedData[v] = gch; } } public void InitializeState() { if (cachedData != null) { foreach (var gch in cachedData.Values) { gch.Free(); } cachedData = null; } EvaluatedSolutions = 0; } } }