#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Text;
using HeuristicLab.Collections;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// Parses mathematical expressions in infix form. E.g. x1 * (3.0 * x2 + x3)
/// Identifier format (functions or variables): '_' | letter { '_' | letter | digit }
/// Variables names and variable values can be set under quotes "" or '' because variable names might contain spaces.
/// Variable = ident | " ident " | ' ident '
/// It is also possible to use functions e.g. log("x1") or real-valued constants e.g. 3.1415 .
/// Variable names are case sensitive. Function names are not case sensitive.
///
///
/// S = Expr EOF
/// Expr = ['-' | '+'] Term { '+' Term | '-' Term }
/// Term = Fact { '*' Fact | '/' Fact }
/// Fact = SimpleFact [ '^' SimpleFact ]
/// SimpleFact = '(' Expr ')'
/// | '{' Expr '}'
/// | 'LAG' '(' varId ',' ['+' | '-' ] number ')
/// | funcId '(' ArgList ')'
/// | VarExpr
/// | number
/// ArgList = Expr { ',' Expr }
/// VarExpr = varId OptFactorPart
/// OptFactorPart = [ ('=' varVal | '[' ['+' | '-' ] number {',' ['+' | '-' ] number } ']' ) ]
/// varId = ident | ' ident ' | " ident "
/// varVal = ident | ' ident ' | " ident "
/// ident = '_' | letter { '_' | letter | digit }
///
public sealed class InfixExpressionParser {
private enum TokenType { Operator, Identifier, Number, LeftPar, RightPar, LeftBracket, RightBracket, Comma, Eq, End, NA };
private class Token {
internal double doubleVal;
internal string strVal;
internal TokenType TokenType;
}
private class SymbolNameComparer : IEqualityComparer, IComparer {
public int Compare(ISymbol x, ISymbol y) {
return x.Name.CompareTo(y.Name);
}
public bool Equals(ISymbol x, ISymbol y) {
return Compare(x, y) == 0;
}
public int GetHashCode(ISymbol obj) {
return obj.Name.GetHashCode();
}
}
// format name <-> symbol
// the lookup table is also used in the corresponding formatter
internal static readonly BidirectionalLookup
knownSymbols = new BidirectionalLookup(StringComparer.InvariantCulture, new SymbolNameComparer());
private Constant constant = new Constant();
private Variable variable = new Variable();
private BinaryFactorVariable binaryFactorVar = new BinaryFactorVariable();
private FactorVariable factorVar = new FactorVariable();
private ProgramRootSymbol programRootSymbol = new ProgramRootSymbol();
private StartSymbol startSymbol = new StartSymbol();
static InfixExpressionParser() {
// populate bidirectional lookup
var dict = new Dictionary
{
{ "+", new Addition()},
{ "/", new Division()},
{ "*", new Multiplication()},
{ "-", new Subtraction()},
{ "^", new Power() },
{ "ABS", new Absolute() },
{ "EXP", new Exponential()},
{ "LOG", new Logarithm()},
{ "POW", new Power() },
{ "ROOT", new Root()},
{ "SQR", new Square() },
{ "SQRT", new SquareRoot() },
{ "CUBE", new Cube() },
{ "CUBEROOT", new CubeRoot() },
{ "SIN",new Sine()},
{ "COS", new Cosine()},
{ "TAN", new Tangent()},
{ "TANH", new HyperbolicTangent()},
{ "AIRYA", new AiryA()},
{ "AIRYB", new AiryB()},
{ "BESSEL", new Bessel()},
{ "COSINT", new CosineIntegral()},
{ "SININT", new SineIntegral()},
{ "HYPCOSINT", new HyperbolicCosineIntegral()},
{ "HYPSININT", new HyperbolicSineIntegral()},
{ "FRESNELSININT", new FresnelSineIntegral()},
{ "FRESNELCOSINT", new FresnelCosineIntegral()},
{ "NORM", new Norm()},
{ "ERF", new Erf()},
{ "GAMMA", new Gamma()},
{ "PSI", new Psi()},
{ "DAWSON", new Dawson()},
{ "EXPINT", new ExponentialIntegralEi()},
{ "AQ", new AnalyticQuotient() },
{ "MEAN", new Average()},
{ "IF", new IfThenElse()},
{ "GT", new GreaterThan()},
{ "LT", new LessThan()},
{ "AND", new And()},
{ "OR", new Or()},
{ "NOT", new Not()},
{ "XOR", new Xor()},
{ "DIFF", new Derivative()},
{ "LAG", new LaggedVariable() },
};
foreach (var kvp in dict) {
knownSymbols.Add(kvp.Key, kvp.Value);
}
}
public ISymbolicExpressionTree Parse(string str) {
ISymbolicExpressionTreeNode root = programRootSymbol.CreateTreeNode();
ISymbolicExpressionTreeNode start = startSymbol.CreateTreeNode();
var allTokens = GetAllTokens(str).ToArray();
ISymbolicExpressionTreeNode mainBranch = ParseS(new Queue(allTokens));
// only a main branch was given => insert the main branch into the default tree template
root.AddSubtree(start);
start.AddSubtree(mainBranch);
return new SymbolicExpressionTree(root);
}
private IEnumerable GetAllTokens(string str) {
int pos = 0;
while (true) {
while (pos < str.Length && Char.IsWhiteSpace(str[pos])) pos++;
if (pos >= str.Length) {
yield return new Token { TokenType = TokenType.End, strVal = "" };
yield break;
}
if (char.IsDigit(str[pos])) {
// read number (=> read until white space or operator or comma)
var sb = new StringBuilder();
sb.Append(str[pos]);
pos++;
while (pos < str.Length && !char.IsWhiteSpace(str[pos])
&& (str[pos] != '+' || str[pos - 1] == 'e' || str[pos - 1] == 'E') // continue reading exponents
&& (str[pos] != '-' || str[pos - 1] == 'e' || str[pos - 1] == 'E')
&& str[pos] != '*'
&& str[pos] != '/'
&& str[pos] != '^'
&& str[pos] != ')'
&& str[pos] != ']'
&& str[pos] != '}'
&& str[pos] != ',') {
sb.Append(str[pos]);
pos++;
}
double dblVal;
if (double.TryParse(sb.ToString(), NumberStyles.Float, CultureInfo.InvariantCulture, out dblVal))
yield return new Token { TokenType = TokenType.Number, strVal = sb.ToString(), doubleVal = dblVal };
else yield return new Token { TokenType = TokenType.NA, strVal = sb.ToString() };
} else if (char.IsLetter(str[pos]) || str[pos] == '_') {
// read ident
var sb = new StringBuilder();
sb.Append(str[pos]);
pos++;
while (pos < str.Length &&
(char.IsLetter(str[pos]) || str[pos] == '_' || char.IsDigit(str[pos]))) {
sb.Append(str[pos]);
pos++;
}
yield return new Token { TokenType = TokenType.Identifier, strVal = sb.ToString() };
} else if (str[pos] == '"') {
// read to next "
pos++;
var sb = new StringBuilder();
while (pos < str.Length && str[pos] != '"') {
sb.Append(str[pos]);
pos++;
}
if (pos < str.Length && str[pos] == '"') {
pos++; // skip "
yield return new Token { TokenType = TokenType.Identifier, strVal = sb.ToString() };
} else
yield return new Token { TokenType = TokenType.NA };
} else if (str[pos] == '\'') {
// read to next '
pos++;
var sb = new StringBuilder();
while (pos < str.Length && str[pos] != '\'') {
sb.Append(str[pos]);
pos++;
}
if (pos < str.Length && str[pos] == '\'') {
pos++; // skip '
yield return new Token { TokenType = TokenType.Identifier, strVal = sb.ToString() };
} else
yield return new Token { TokenType = TokenType.NA };
} else if (str[pos] == '+') {
pos++;
yield return new Token { TokenType = TokenType.Operator, strVal = "+" };
} else if (str[pos] == '-') {
pos++;
yield return new Token { TokenType = TokenType.Operator, strVal = "-" };
} else if (str[pos] == '/') {
pos++;
yield return new Token { TokenType = TokenType.Operator, strVal = "/" };
} else if (str[pos] == '*') {
pos++;
yield return new Token { TokenType = TokenType.Operator, strVal = "*" };
} else if (str[pos] == '^') {
pos++;
yield return new Token { TokenType = TokenType.Operator, strVal = "^" };
} else if (str[pos] == '(') {
pos++;
yield return new Token { TokenType = TokenType.LeftPar, strVal = "(" };
} else if (str[pos] == ')') {
pos++;
yield return new Token { TokenType = TokenType.RightPar, strVal = ")" };
} else if (str[pos] == '[') {
pos++;
yield return new Token { TokenType = TokenType.LeftBracket, strVal = "[" };
} else if (str[pos] == ']') {
pos++;
yield return new Token { TokenType = TokenType.RightBracket, strVal = "]" };
} else if (str[pos] == '{') {
pos++;
yield return new Token { TokenType = TokenType.LeftPar, strVal = "{" };
} else if (str[pos] == '}') {
pos++;
yield return new Token { TokenType = TokenType.RightPar, strVal = "}" };
} else if (str[pos] == '=') {
pos++;
yield return new Token { TokenType = TokenType.Eq, strVal = "=" };
} else if (str[pos] == ',') {
pos++;
yield return new Token { TokenType = TokenType.Comma, strVal = "," };
} else {
throw new ArgumentException("Invalid character: " + str[pos]);
}
}
}
/// S = Expr EOF
private ISymbolicExpressionTreeNode ParseS(Queue tokens) {
var expr = ParseExpr(tokens);
var endTok = tokens.Dequeue();
if (endTok.TokenType != TokenType.End)
throw new ArgumentException(string.Format("Expected end of expression (got {0})", endTok.strVal));
return expr;
}
/// Expr = ['-' | '+'] Term { '+' Term | '-' Term }
private ISymbolicExpressionTreeNode ParseExpr(Queue tokens) {
var next = tokens.Peek();
var posTerms = new List();
var negTerms = new List();
bool negateFirstTerm = false;
if (next.TokenType == TokenType.Operator && (next.strVal == "+" || next.strVal == "-")) {
tokens.Dequeue();
if (next.strVal == "-")
negateFirstTerm = true;
}
var t = ParseTerm(tokens);
if (negateFirstTerm) negTerms.Add(t);
else posTerms.Add(t);
next = tokens.Peek();
while (next.strVal == "+" || next.strVal == "-") {
switch (next.strVal) {
case "+": {
tokens.Dequeue();
var term = ParseTerm(tokens);
posTerms.Add(term);
break;
}
case "-": {
tokens.Dequeue();
var term = ParseTerm(tokens);
negTerms.Add(term);
break;
}
}
next = tokens.Peek();
}
var sum = GetSymbol("+").CreateTreeNode();
foreach (var posTerm in posTerms) sum.AddSubtree(posTerm);
if (negTerms.Any()) {
if (negTerms.Count == 1) {
var sub = GetSymbol("-").CreateTreeNode();
sub.AddSubtree(negTerms.Single());
sum.AddSubtree(sub);
} else {
var sumNeg = GetSymbol("+").CreateTreeNode();
foreach (var negTerm in negTerms) sumNeg.AddSubtree(negTerm);
var constNode = (ConstantTreeNode)constant.CreateTreeNode();
constNode.Value = -1.0;
var prod = GetSymbol("*").CreateTreeNode();
prod.AddSubtree(constNode);
prod.AddSubtree(sumNeg);
sum.AddSubtree(prod);
}
}
if (sum.SubtreeCount == 1) return sum.Subtrees.First();
else return sum;
}
private ISymbol GetSymbol(string tok) {
var symb = knownSymbols.GetByFirst(tok).FirstOrDefault();
if (symb == null) throw new ArgumentException(string.Format("Unknown token {0} found.", tok));
return symb;
}
/// Term = Fact { '*' Fact | '/' Fact }
private ISymbolicExpressionTreeNode ParseTerm(Queue tokens) {
var factors = new List();
var firstFactor = ParseFact(tokens);
factors.Add(firstFactor);
var next = tokens.Peek();
while (next.strVal == "*" || next.strVal == "/") {
switch (next.strVal) {
case "*": {
tokens.Dequeue();
var fact = ParseFact(tokens);
factors.Add(fact);
break;
}
case "/": {
tokens.Dequeue();
var invFact = ParseFact(tokens);
var divNode = GetSymbol("/").CreateTreeNode(); // 1/x
divNode.AddSubtree(invFact);
factors.Add(divNode);
break;
}
}
next = tokens.Peek();
}
if (factors.Count == 1) return factors.First();
else {
var prod = GetSymbol("*").CreateTreeNode();
foreach (var f in factors) prod.AddSubtree(f);
return prod;
}
}
// Fact = SimpleFact ['^' SimpleFact]
private ISymbolicExpressionTreeNode ParseFact(Queue tokens) {
var expr = ParseSimpleFact(tokens);
var next = tokens.Peek();
if (next.TokenType == TokenType.Operator && next.strVal == "^") {
tokens.Dequeue(); // skip;
var p = GetSymbol("^").CreateTreeNode();
p.AddSubtree(expr);
p.AddSubtree(ParseSimpleFact(tokens));
expr = p;
}
return expr;
}
/// SimpleFact = '(' Expr ')'
/// | '{' Expr '}'
/// | 'LAG' '(' varId ',' ['+' | '-' ] number ')'
/// | funcId '(' ArgList ')
/// | VarExpr
/// | number
/// ArgList = Expr { ',' Expr }
/// VarExpr = varId OptFactorPart
/// OptFactorPart = [ ('=' varVal | '[' ['+' | '-' ] number {',' ['+' | '-' ] number } ']' ) ]
/// varId = ident | ' ident ' | " ident "
/// varVal = ident | ' ident ' | " ident "
/// ident = '_' | letter { '_' | letter | digit }
private ISymbolicExpressionTreeNode ParseSimpleFact(Queue tokens) {
var next = tokens.Peek();
if (next.TokenType == TokenType.LeftPar) {
var initPar = tokens.Dequeue(); // match par type
var expr = ParseExpr(tokens);
var rPar = tokens.Dequeue();
if (rPar.TokenType != TokenType.RightPar)
throw new ArgumentException("expected closing parenthesis");
if (initPar.strVal == "(" && rPar.strVal == "}")
throw new ArgumentException("expected closing )");
if (initPar.strVal == "{" && rPar.strVal == ")")
throw new ArgumentException("expected closing }");
return expr;
} else if (next.TokenType == TokenType.Identifier) {
var idTok = tokens.Dequeue();
if (tokens.Peek().TokenType == TokenType.LeftPar) {
// function identifier or LAG
var funcId = idTok.strVal.ToUpperInvariant();
var funcNode = GetSymbol(funcId).CreateTreeNode();
var lPar = tokens.Dequeue();
if (lPar.TokenType != TokenType.LeftPar)
throw new ArgumentException("expected (");
// handle 'lag' specifically
if (funcNode.Symbol is LaggedVariable) {
var varId = tokens.Dequeue();
if (varId.TokenType != TokenType.Identifier) throw new ArgumentException("Identifier expected. Format for lagged variables: \"lag(x, -1)\"");
var comma = tokens.Dequeue();
if (comma.TokenType != TokenType.Comma) throw new ArgumentException("',' expected, Format for lagged variables: \"lag(x, -1)\"");
double sign = 1.0;
if (tokens.Peek().strVal == "+" || tokens.Peek().strVal == "-") {
// read sign
var signTok = tokens.Dequeue();
if (signTok.strVal == "-") sign = -1.0;
}
var lagToken = tokens.Dequeue();
if (lagToken.TokenType != TokenType.Number) throw new ArgumentException("Number expected, Format for lagged variables: \"lag(x, -1)\"");
if (!lagToken.doubleVal.IsAlmost(Math.Round(lagToken.doubleVal)))
throw new ArgumentException("Time lags must be integer values");
var laggedVarNode = funcNode as LaggedVariableTreeNode;
laggedVarNode.VariableName = varId.strVal;
laggedVarNode.Lag = (int)Math.Round(sign * lagToken.doubleVal);
laggedVarNode.Weight = 1.0;
} else {
// functions
var args = ParseArgList(tokens);
// check number of arguments
if (funcNode.Symbol.MinimumArity > args.Length || funcNode.Symbol.MaximumArity < args.Length) {
throw new ArgumentException(string.Format("Symbol {0} requires between {1} and {2} arguments.", funcId,
funcNode.Symbol.MinimumArity, funcNode.Symbol.MaximumArity));
}
foreach (var arg in args) funcNode.AddSubtree(arg);
}
var rPar = tokens.Dequeue();
if (rPar.TokenType != TokenType.RightPar)
throw new ArgumentException("expected )");
return funcNode;
} else {
// variable
if (tokens.Peek().TokenType == TokenType.Eq) {
// binary factor
tokens.Dequeue(); // skip Eq
var valTok = tokens.Dequeue();
if (valTok.TokenType != TokenType.Identifier) throw new ArgumentException("expected identifier");
var binFactorNode = (BinaryFactorVariableTreeNode)binaryFactorVar.CreateTreeNode();
binFactorNode.Weight = 1.0;
binFactorNode.VariableName = idTok.strVal;
binFactorNode.VariableValue = valTok.strVal;
return binFactorNode;
} else if (tokens.Peek().TokenType == TokenType.LeftBracket) {
// factor variable
var factorVariableNode = (FactorVariableTreeNode)factorVar.CreateTreeNode();
factorVariableNode.VariableName = idTok.strVal;
tokens.Dequeue(); // skip [
var weights = new List();
// at least one weight is necessary
var sign = 1.0;
if (tokens.Peek().TokenType == TokenType.Operator) {
var opToken = tokens.Dequeue();
if (opToken.strVal == "+") sign = 1.0;
else if (opToken.strVal == "-") sign = -1.0;
else throw new ArgumentException();
}
if (tokens.Peek().TokenType != TokenType.Number) throw new ArgumentException("number expected");
var weightTok = tokens.Dequeue();
weights.Add(sign * weightTok.doubleVal);
while (tokens.Peek().TokenType == TokenType.Comma) {
// skip comma
tokens.Dequeue();
if (tokens.Peek().TokenType == TokenType.Operator) {
var opToken = tokens.Dequeue();
if (opToken.strVal == "+") sign = 1.0;
else if (opToken.strVal == "-") sign = -1.0;
else throw new ArgumentException();
}
weightTok = tokens.Dequeue();
if (weightTok.TokenType != TokenType.Number) throw new ArgumentException("number expected");
weights.Add(sign * weightTok.doubleVal);
}
var rightBracketToken = tokens.Dequeue();
if (rightBracketToken.TokenType != TokenType.RightBracket) throw new ArgumentException("closing bracket ] expected");
factorVariableNode.Weights = weights.ToArray();
return factorVariableNode;
} else {
// variable
var varNode = (VariableTreeNode)variable.CreateTreeNode();
varNode.Weight = 1.0;
varNode.VariableName = idTok.strVal;
return varNode;
}
}
} else if (next.TokenType == TokenType.Number) {
var numTok = tokens.Dequeue();
var constNode = (ConstantTreeNode)constant.CreateTreeNode();
constNode.Value = numTok.doubleVal;
return constNode;
} else {
throw new ArgumentException(string.Format("unexpected token in expression {0}", next.strVal));
}
}
// ArgList = Expr { ',' Expr }
private ISymbolicExpressionTreeNode[] ParseArgList(Queue tokens) {
var exprList = new List();
exprList.Add(ParseExpr(tokens));
while (tokens.Peek().TokenType != TokenType.RightPar) {
var comma = tokens.Dequeue();
if (comma.TokenType != TokenType.Comma) throw new ArgumentException("expected ',' ");
exprList.Add(ParseExpr(tokens));
}
return exprList.ToArray();
}
}
}