1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
26 | using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
29 | public static class SymbolicExpressionTreeHash {
|
---|
30 | private static readonly Addition add = new Addition();
|
---|
31 | private static readonly Subtraction sub = new Subtraction();
|
---|
32 | private static readonly Multiplication mul = new Multiplication();
|
---|
33 | private static readonly Division div = new Division();
|
---|
34 | private static readonly Logarithm log = new Logarithm();
|
---|
35 | private static readonly Exponential exp = new Exponential();
|
---|
36 | private static readonly Sine sin = new Sine();
|
---|
37 | private static readonly Cosine cos = new Cosine();
|
---|
38 | private static readonly Constant constant = new Constant();
|
---|
39 |
|
---|
40 | private static ISymbolicExpressionTreeNode ActualRoot(this ISymbolicExpressionTree tree) => tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
41 |
|
---|
42 | #region tree hashing
|
---|
43 | public static ulong[] Hash(this ISymbolicExpressionTree tree, bool simplify = false, bool strict = false) {
|
---|
44 | return tree.ActualRoot().Hash(simplify, strict);
|
---|
45 | }
|
---|
46 |
|
---|
47 | public static ulong[] Hash(this ISymbolicExpressionTreeNode node, bool simplify = false, bool strict = false) {
|
---|
48 | ulong hashFunction(byte[] input) => HashUtil.DJBHash(input);
|
---|
49 |
|
---|
50 | var hashNodes = simplify ? node.MakeNodes(strict).Simplify(hashFunction) : node.MakeNodes(strict).Sort(hashFunction);
|
---|
51 | var hashes = new ulong[hashNodes.Length];
|
---|
52 | for (int i = 0; i < hashes.Length; ++i) {
|
---|
53 | hashes[i] = hashNodes[i].CalculatedHashValue;
|
---|
54 | }
|
---|
55 | return hashes;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public static ulong ComputeHash(this ISymbolicExpressionTree tree, bool simplify = false, bool strict = false) {
|
---|
59 | return ComputeHash(tree.ActualRoot(), simplify, strict);
|
---|
60 | }
|
---|
61 |
|
---|
62 | public static ulong ComputeHash(this ISymbolicExpressionTreeNode treeNode, bool simplify = false, bool strict = false) {
|
---|
63 | return treeNode.Hash(simplify, strict).Last();
|
---|
64 | }
|
---|
65 |
|
---|
66 | public static HashNode<ISymbolicExpressionTreeNode> ToHashNode(this ISymbolicExpressionTreeNode node, bool strict = false) {
|
---|
67 | var symbol = node.Symbol;
|
---|
68 | var name = symbol.Name;
|
---|
69 | if (node is ConstantTreeNode constantNode) {
|
---|
70 | name = strict ? constantNode.Value.ToString() : symbol.Name;
|
---|
71 | } else if (node is VariableTreeNode variableNode) {
|
---|
72 | name = strict ? variableNode.Weight.ToString() + variableNode.VariableName : variableNode.VariableName;
|
---|
73 | }
|
---|
74 | var hash = (ulong)name.GetHashCode();
|
---|
75 | var hashNode = new HashNode<ISymbolicExpressionTreeNode> {
|
---|
76 | Data = node,
|
---|
77 | Arity = node.SubtreeCount,
|
---|
78 | Size = node.SubtreeCount,
|
---|
79 | IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication,
|
---|
80 | Enabled = true,
|
---|
81 | HashValue = hash,
|
---|
82 | CalculatedHashValue = hash
|
---|
83 | };
|
---|
84 | if (symbol is Addition) {
|
---|
85 | hashNode.Simplify = SimplifyAddition;
|
---|
86 | } else if (symbol is Multiplication) {
|
---|
87 | hashNode.Simplify = SimplifyMultiplication;
|
---|
88 | } else if (symbol is Division) {
|
---|
89 | hashNode.Simplify = SimplifyDivision;
|
---|
90 | } else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) {
|
---|
91 | hashNode.Simplify = SimplifyUnaryNode;
|
---|
92 | } else if (symbol is Subtraction) {
|
---|
93 | hashNode.Simplify = SimplifyBinaryNode;
|
---|
94 | }
|
---|
95 | return hashNode;
|
---|
96 | }
|
---|
97 |
|
---|
98 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTree tree, bool strict = false) {
|
---|
99 | return MakeNodes(tree.ActualRoot(), strict);
|
---|
100 | }
|
---|
101 |
|
---|
102 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTreeNode node, bool strict = false) {
|
---|
103 | return node.IterateNodesPostfix().Select(x => x.ToHashNode(strict)).ToArray().UpdateNodeSizes();
|
---|
104 | }
|
---|
105 | #endregion
|
---|
106 |
|
---|
107 | #region tree similarity
|
---|
108 | public static double ComputeSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool simplify = false, bool strict = false) {
|
---|
109 | return ComputeSimilarity(t1.ActualRoot(), t2.ActualRoot(), simplify, strict);
|
---|
110 | }
|
---|
111 |
|
---|
112 | public static double ComputeSimilarity(ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, bool simplify = false, bool strict = false) {
|
---|
113 | var lh = t1.Hash(simplify, strict);
|
---|
114 | var rh = t2.Hash(simplify, strict);
|
---|
115 |
|
---|
116 | Array.Sort(lh);
|
---|
117 | Array.Sort(rh);
|
---|
118 |
|
---|
119 | return ComputeSimilarity(lh, rh);
|
---|
120 | }
|
---|
121 |
|
---|
122 | // requires lhs and rhs to be sorted
|
---|
123 | public static int IntersectCount(this ulong[] lh, ulong[] rh) {
|
---|
124 | int count = 0;
|
---|
125 | for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
|
---|
126 | var h1 = lh[i];
|
---|
127 | var h2 = rh[j];
|
---|
128 | if (h1 == h2) {
|
---|
129 | ++count;
|
---|
130 | ++i;
|
---|
131 | ++j;
|
---|
132 | } else if (h1 < h2) {
|
---|
133 | ++i;
|
---|
134 | } else if (h1 > h2) {
|
---|
135 | ++j;
|
---|
136 | }
|
---|
137 | }
|
---|
138 | return count;
|
---|
139 | }
|
---|
140 |
|
---|
141 | public static IEnumerable<ulong> Intersect(this ulong[] lh, ulong[] rh) {
|
---|
142 | for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
|
---|
143 | var h1 = lh[i];
|
---|
144 | var h2 = rh[j];
|
---|
145 | if (h1 == h2) {
|
---|
146 | yield return h1;
|
---|
147 | ++i;
|
---|
148 | ++j;
|
---|
149 | } else if (h1 < h2) {
|
---|
150 | ++i;
|
---|
151 | } else if (h1 > h2) {
|
---|
152 | ++j;
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | // this will only work if lh and rh are sorted
|
---|
158 | public static double ComputeSimilarity(ulong[] lh, ulong[] rh) {
|
---|
159 | return 2d * IntersectCount(lh, rh) / (lh.Length + rh.Length);
|
---|
160 | }
|
---|
161 |
|
---|
162 | public static double ComputeAverageSimilarity(IList<ISymbolicExpressionTree> trees, bool simplify = false, bool strict = false) {
|
---|
163 | var total = trees.Count * (trees.Count - 1) / 2;
|
---|
164 | double avg = 0;
|
---|
165 | var hashes = new ulong[trees.Count][];
|
---|
166 | // build hash arrays
|
---|
167 | for (int i = 0; i < trees.Count; ++i) {
|
---|
168 | var nodes = trees[i].MakeNodes(strict);
|
---|
169 | hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
|
---|
170 | Array.Sort(hashes[i]);
|
---|
171 | }
|
---|
172 | // compute similarity matrix
|
---|
173 | for (int i = 0; i < trees.Count - 1; ++i) {
|
---|
174 | for (int j = i + 1; j < trees.Count; ++j) {
|
---|
175 | avg += ComputeSimilarity(hashes[i], hashes[j]);
|
---|
176 | }
|
---|
177 | }
|
---|
178 | return avg / total;
|
---|
179 | }
|
---|
180 |
|
---|
181 | public static double[,] ComputeSimilarityMatrix(IList<ISymbolicExpressionTree> trees, bool simplify = false, bool strict = false) {
|
---|
182 | var sim = new double[trees.Count, trees.Count];
|
---|
183 | var hashes = new ulong[trees.Count][];
|
---|
184 | // build hash arrays
|
---|
185 | for (int i = 0; i < trees.Count; ++i) {
|
---|
186 | var nodes = trees[i].MakeNodes(strict);
|
---|
187 | hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
|
---|
188 | Array.Sort(hashes[i]);
|
---|
189 | }
|
---|
190 | // compute similarity matrix
|
---|
191 | for (int i = 0; i < trees.Count - 1; ++i) {
|
---|
192 | for (int j = i + 1; j < trees.Count; ++j) {
|
---|
193 | sim[i, j] = sim[j, i] = ComputeSimilarity(hashes[i], hashes[j]);
|
---|
194 | }
|
---|
195 | }
|
---|
196 | return sim;
|
---|
197 | }
|
---|
198 | #endregion
|
---|
199 |
|
---|
200 | #region parse a nodes array back into a tree
|
---|
201 | public static ISymbolicExpressionTree ToTree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
202 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
203 | var start = new StartSymbol().CreateTreeNode();
|
---|
204 | root.AddSubtree(start);
|
---|
205 | start.AddSubtree(nodes.ToSubtree());
|
---|
206 | return new SymbolicExpressionTree(root);
|
---|
207 | }
|
---|
208 |
|
---|
209 | public static ISymbolicExpressionTreeNode ToSubtree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
210 | var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray();
|
---|
211 |
|
---|
212 | for (int i = nodes.Length - 1; i >= 0; --i) {
|
---|
213 | var node = nodes[i];
|
---|
214 |
|
---|
215 | if (node.IsLeaf) {
|
---|
216 | if (node.Data is VariableTreeNode variable) {
|
---|
217 | var variableTreeNode = (VariableTreeNode)treeNodes[i];
|
---|
218 | variableTreeNode.VariableName = variable.VariableName;
|
---|
219 | variableTreeNode.Weight = variable.Weight;
|
---|
220 | } else if (node.Data is ConstantTreeNode @const) {
|
---|
221 | var constantTreeNode = (ConstantTreeNode)treeNodes[i];
|
---|
222 | constantTreeNode.Value = @const.Value;
|
---|
223 | }
|
---|
224 | continue;
|
---|
225 | }
|
---|
226 |
|
---|
227 | var treeNode = treeNodes[i];
|
---|
228 |
|
---|
229 | foreach (var j in nodes.IterateChildren(i)) {
|
---|
230 | treeNode.AddSubtree(treeNodes[j]);
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | return treeNodes.Last();
|
---|
235 | }
|
---|
236 |
|
---|
237 | private static T CreateTreeNode<T>(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode {
|
---|
238 | return (T)symbol.CreateTreeNode();
|
---|
239 | }
|
---|
240 | #endregion
|
---|
241 |
|
---|
242 | #region tree simplification
|
---|
243 | // these simplification methods rely on the assumption that child nodes of the current node have already been simplified
|
---|
244 | // (in other words simplification should be applied in a bottom-up fashion)
|
---|
245 | public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
|
---|
246 | ulong hashFunction(byte[] bytes) => HashUtil.JSHash(bytes);
|
---|
247 | var root = tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
248 | var nodes = root.MakeNodes();
|
---|
249 | var simplified = nodes.Simplify(hashFunction);
|
---|
250 | return simplified.ToTree();
|
---|
251 | }
|
---|
252 |
|
---|
253 | public static void SimplifyAddition(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
254 | // simplify additions of terms by eliminating terms with the same symbol and hash
|
---|
255 | var children = nodes.IterateChildren(i);
|
---|
256 |
|
---|
257 | // we always assume the child nodes are sorted
|
---|
258 | var curr = children[0];
|
---|
259 | var node = nodes[i];
|
---|
260 |
|
---|
261 | foreach (var j in children.Skip(1)) {
|
---|
262 | if (nodes[j] == nodes[curr]) {
|
---|
263 | nodes.SetEnabled(j, false);
|
---|
264 | node.Arity--;
|
---|
265 | } else {
|
---|
266 | curr = j;
|
---|
267 | }
|
---|
268 | }
|
---|
269 | if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all
|
---|
270 | node.Enabled = false;
|
---|
271 | }
|
---|
272 | }
|
---|
273 |
|
---|
274 | // simplify multiplications by reducing constants and div terms
|
---|
275 | public static void SimplifyMultiplication(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
276 | var node = nodes[i];
|
---|
277 | var children = nodes.IterateChildren(i);
|
---|
278 |
|
---|
279 | for (int j = 0; j < children.Length; ++j) {
|
---|
280 | var c = children[j];
|
---|
281 | var child = nodes[c];
|
---|
282 |
|
---|
283 | if (!child.Enabled)
|
---|
284 | continue;
|
---|
285 |
|
---|
286 | var symbol = child.Data.Symbol;
|
---|
287 | if (symbol is Constant) {
|
---|
288 | for (int k = j + 1; k < children.Length; ++k) {
|
---|
289 | var d = children[k];
|
---|
290 | if (nodes[d].Data.Symbol is Constant) {
|
---|
291 | nodes[d].Enabled = false;
|
---|
292 | node.Arity--;
|
---|
293 | } else {
|
---|
294 | break;
|
---|
295 | }
|
---|
296 | }
|
---|
297 | } else if (symbol is Division) {
|
---|
298 | var div = nodes[c];
|
---|
299 | var denominator =
|
---|
300 | div.Arity == 1 ?
|
---|
301 | nodes[c - 1] : // 1 / x is expressed as div(x) (with a single child)
|
---|
302 | nodes[c - nodes[c - 1].Size - 2]; // assume division always has arity 1 or 2
|
---|
303 |
|
---|
304 | foreach (var d in children) {
|
---|
305 | if (nodes[d].Enabled && nodes[d] == denominator) {
|
---|
306 | nodes[c].Enabled = nodes[d].Enabled = denominator.Enabled = false;
|
---|
307 | node.Arity -= 2; // matching child + division node
|
---|
308 | break;
|
---|
309 | }
|
---|
310 | }
|
---|
311 | }
|
---|
312 |
|
---|
313 | if (node.Arity == 0) { // if everything is simplified this node becomes constant
|
---|
314 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
315 | constantTreeNode.Value = 1;
|
---|
316 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
317 | } else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node
|
---|
318 | node.Enabled = false;
|
---|
319 | }
|
---|
320 | }
|
---|
321 | }
|
---|
322 |
|
---|
323 | public static void SimplifyDivision(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
324 | var node = nodes[i];
|
---|
325 | var children = nodes.IterateChildren(i);
|
---|
326 |
|
---|
327 | var tmp = nodes;
|
---|
328 |
|
---|
329 | if (children.All(x => tmp[x].Data.Symbol is Constant)) {
|
---|
330 | var v = ((ConstantTreeNode)nodes[children.First()].Data).Value;
|
---|
331 | if (node.Arity == 1) {
|
---|
332 | v = 1 / v;
|
---|
333 | } else if (node.Arity > 1) {
|
---|
334 | foreach (var j in children.Skip(1)) {
|
---|
335 | v /= ((ConstantTreeNode)nodes[j].Data).Value;
|
---|
336 | }
|
---|
337 | }
|
---|
338 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
339 | constantTreeNode.Value = v;
|
---|
340 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
341 | return;
|
---|
342 | }
|
---|
343 |
|
---|
344 | var nominator = nodes[children[0]];
|
---|
345 | foreach (var j in children.Skip(1)) {
|
---|
346 | var denominator = nodes[j];
|
---|
347 | if (nominator == denominator) {
|
---|
348 | // disable all the children of the division node (nominator and children + denominator and children)
|
---|
349 | nominator.Enabled = denominator.Enabled = false;
|
---|
350 | node.Arity -= 2; // nominator + denominator
|
---|
351 | }
|
---|
352 | if (node.Arity == 0) {
|
---|
353 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
354 | constantTreeNode.Value = 1; // x / x = 1
|
---|
355 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
356 | }
|
---|
357 | }
|
---|
358 | }
|
---|
359 |
|
---|
360 | public static void SimplifyUnaryNode(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
361 | // check if the child of the unary node is a constant, then the whole node can be simplified
|
---|
362 | var parent = nodes[i];
|
---|
363 | var child = nodes[i - 1];
|
---|
364 |
|
---|
365 | var parentSymbol = parent.Data.Symbol;
|
---|
366 | var childSymbol = child.Data.Symbol;
|
---|
367 |
|
---|
368 | if (childSymbol is Constant) {
|
---|
369 | nodes[i].Enabled = false;
|
---|
370 | } else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) {
|
---|
371 | child.Enabled = parent.Enabled = false;
|
---|
372 | }
|
---|
373 | }
|
---|
374 |
|
---|
375 | public static void SimplifyBinaryNode(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
376 | var children = nodes.IterateChildren(i);
|
---|
377 | var tmp = nodes;
|
---|
378 | if (children.All(x => tmp[x].Data.Symbol is Constant)) {
|
---|
379 | foreach (var j in children) {
|
---|
380 | nodes[j].Enabled = false;
|
---|
381 | }
|
---|
382 | nodes[i] = constant.CreateTreeNode().ToHashNode();
|
---|
383 | }
|
---|
384 | }
|
---|
385 | #endregion
|
---|
386 | }
|
---|
387 | }
|
---|