#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
public static class SymbolicExpressionHashExtensions {
public sealed class HashNode : IComparable>, IEquatable> where T : class {
public T Data;
public int Arity;
public int Size;
public bool IsCommutative;
public bool Enabled;
public ulong HashValue; // the initial (fixed) hash value for this individual node/data
public ulong CalculatedHashValue; // the calculated hash value (taking into account the children hash values)
public delegate void SimplifyAction(ref HashNode[] nodes, int i);
public SimplifyAction Simplify;
//public IComparer Comparer;
public bool IsLeaf => Arity == 0;
//public HashNode(IComparer comparer) {
// Comparer = comparer;
//}
//public HashNode() { }
public int CompareTo(HashNode other) {
return CalculatedHashValue.CompareTo(other.CalculatedHashValue);
}
public override string ToString() {
return $"{Data} {Arity} {Size} {CalculatedHashValue} {Enabled}";
}
public bool Equals(HashNode other) {
return CalculatedHashValue.Equals(other.CalculatedHashValue);
}
public override bool Equals(object obj) {
var other = obj as HashNode;
if (other != null)
return Equals(other);
return base.Equals(obj);
}
public override int GetHashCode() {
return (int)CalculatedHashValue;
}
public static bool operator ==(HashNode a, HashNode b) {
return a.Equals(b);
}
public static bool operator !=(HashNode a, HashNode b) {
return !a.Equals(b);
}
}
public static ulong ComputeHash(this HashNode[] nodes, int i, Func hashFunction) where T : class {
var node = nodes[i];
const int size = sizeof(ulong);
var hashes = new ulong[node.Arity + 1];
var bytes = new byte[(node.Arity + 1) * size];
for (int j = i - 1, k = 0; k < node.Arity; ++k, j -= 1 + nodes[j].Size) {
hashes[k] = nodes[j].CalculatedHashValue;
}
hashes[node.Arity] = node.HashValue;
Buffer.BlockCopy(hashes, 0, bytes, 0, bytes.Length);
return hashFunction(bytes);
}
// set the enabled state for the whole subtree rooted at this node
public static void SetEnabled(this HashNode[] nodes, int i, bool enabled) where T : class {
nodes[i].Enabled = enabled;
for (int j = i - nodes[i].Size; j < i; ++j)
nodes[j].Enabled = enabled;
}
public static HashNode[] Simplify(this HashNode[] nodes, Func hashFunction) where T : class {
bool simplified = false;
nodes = nodes.UpdateNodeSizes().Reduce().Sort(hashFunction);
do {
if (simplified) {
simplified = false;
nodes = nodes.Where(x => x.Enabled).ToArray().UpdateNodeSizes().Reduce().Sort(hashFunction);
}
for (int i = 0; i < nodes.Length; ++i) {
var node = nodes[i];
if (node.IsLeaf) {
continue;
}
node.Simplify?.Invoke(ref nodes, i);
for (int j = i - node.Size; j < i; ++j) {
// detect if anything was simplified
if (!nodes[j].Enabled) {
simplified = true;
break;
}
}
}
} while (simplified);
return nodes.UpdateNodeSizes().Sort(hashFunction);
}
public static HashNode[] Sort(this HashNode[] nodes, Func hashFunction) where T : class {
int sort(int a, int b) => nodes[a].CompareTo(nodes[b]);
for (int i = 0; i < nodes.Length; ++i) {
var node = nodes[i];
if (node.IsLeaf) {
continue;
}
if (node.IsCommutative) { // only sort when the argument order does not matter
var arity = node.Arity;
var size = node.Size;
if (arity == size) { // all child nodes are terminals
Array.Sort(nodes, i - size, size);
} else { // i have some non-terminal children
var sorted = new HashNode[size];
var indices = new int[node.Arity];
for (int j = i - 1, k = 0; k < node.Arity; j -= 1 + nodes[j].Size, ++k) {
indices[k] = j;
}
Array.Sort(indices, sort);
int idx = 0;
foreach (var j in indices) {
var child = nodes[j];
if (!child.IsLeaf) { // must copy complete subtree
Array.Copy(nodes, j - child.Size, sorted, idx, child.Size);
idx += child.Size;
}
sorted[idx++] = nodes[j];
}
Array.Copy(sorted, 0, nodes, i - size, size);
}
}
node.CalculatedHashValue = nodes.ComputeHash(i, hashFunction);
}
return nodes;
}
///
/// Get a function node's child indicest
///
/// The data type encapsulated by a hash node
/// An array of hash nodes with up-to-date node sizes
/// The index in the array of hash nodes of the node whose children we want to iterate
/// An array containing child indices
public static int[] IterateChildren(this HashNode[] nodes, int i) where T : class {
var node = nodes[i];
var arity = node.Arity;
var children = new int[arity];
var idx = i - 1;
for (int j = 0; j < arity; ++j) {
children[j] = idx;
idx -= 1 + nodes[idx].Size;
}
return children;
}
public static HashNode[] UpdateNodeSizes(this HashNode[] nodes) where T : class {
for (int i = 0; i < nodes.Length; ++i) {
var node = nodes[i];
if (node.IsLeaf) {
node.Size = 0;
continue;
}
node.Size = node.Arity;
for (int j = i - 1, k = 0; k < node.Arity; j -= 1 + nodes[j].Size, ++k) {
node.Size += nodes[j].Size;
}
}
return nodes;
}
public static HashNode[] Reduce(this HashNode[] nodes) where T : class {
int count = 0;
for (int i = 0; i < nodes.Length; ++i) {
var node = nodes[i];
if (node.IsLeaf || !node.IsCommutative) {
continue;
}
var arity = node.Arity;
for (int j = i - 1, k = 0; k < arity; j -= 1 + nodes[j].Size, ++k) {
if (node.HashValue == nodes[j].HashValue) {
nodes[j].Enabled = false;
node.Arity += nodes[j].Arity - 1;
++count;
}
}
}
if (count == 0)
return nodes;
var reduced = new HashNode[nodes.Length - count];
var idx = 0;
foreach (var node in nodes) {
if (node.Enabled) { reduced[idx++] = node; }
}
return reduced.UpdateNodeSizes();
}
}
}