#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HEAL.Attic; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [Item("SemanticSimilarityCrossover", "An operator which performs subtree swapping based on the notion semantic similarity between subtrees\n" + "(criteria: mean of the absolute differences between the estimated output values of the two subtrees, falling into a user-defined range)\n" + "- Take two parent individuals P0 and P1\n" + "- Randomly choose a node N from the P0\n" + "- Find the first node M that satisfies the semantic similarity criteria\n" + "- Swap N for M and return P0")] [StorableType("8AB40F60-5664-42AB-9DD9-78707476C1B2")] public sealed class SymbolicDataAnalysisExpressionSemanticSimilarityCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData { private const string SemanticSimilarityRangeParameterName = "SemanticSimilarityRange"; #region Parameter properties public IValueParameter SemanticSimilarityRangeParameter { get { return (IValueParameter)Parameters[SemanticSimilarityRangeParameterName]; } } #endregion #region Properties public DoubleRange SemanticSimilarityRange { get { return SemanticSimilarityRangeParameter.Value; } } #endregion [StorableConstructor] private SymbolicDataAnalysisExpressionSemanticSimilarityCrossover(StorableConstructorFlag _) : base(_) { } private SymbolicDataAnalysisExpressionSemanticSimilarityCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisExpressionSemanticSimilarityCrossover() : base() { Parameters.Add(new ValueLookupParameter(SemanticSimilarityRangeParameterName, "Semantic similarity interval.", new DoubleRange(0.0001, 10))); name = "SemanticSimilarityCrossover"; } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionSemanticSimilarityCrossover(this, cloner); } public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) { ISymbolicDataAnalysisExpressionTreeInterpreter interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; List rows = GenerateRowsToEvaluate().ToList(); T problemData = ProblemDataParameter.ActualValue; return Cross(random, parent0, parent1, interpreter, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value, SemanticSimilarityRange); } /// /// Takes two parent individuals P0 and P1. /// Randomly choose a node i from the first parent, then get a node j from the second parent that matches the semantic similarity criteria. /// public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, T problemData, List rows, int maxDepth, int maxLength, DoubleRange range) { var crossoverPoints0 = new List(); parent0.Root.ForEachNodePostfix((n) => { if (n.Parent != null && n.Parent != parent0.Root) crossoverPoints0.Add(new CutPoint(n.Parent, n)); }); var crossoverPoint0 = crossoverPoints0.SampleRandom(random); int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child); int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength(); var allowedBranches = new List(); parent1.Root.ForEachNodePostfix((n) => { if (n.Parent != null && n.Parent != parent1.Root) { if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n)) allowedBranches.Add(n); } }); if (allowedBranches.Count == 0) return parent0; var dataset = problemData.Dataset; // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated var rootSymbol = new ProgramRootSymbol(); var startSymbol = new StartSymbol(); var tree0 = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol); List estimatedValues0 = interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows).ToList(); crossoverPoint0.Child.Parent = crossoverPoint0.Parent; // restore parent ISymbolicExpressionTreeNode selectedBranch = null; // pick the first node that fulfills the semantic similarity conditions foreach (var node in allowedBranches) { var parent = node.Parent; var tree1 = CreateTreeFromNode(random, node, startSymbol, rootSymbol); // this will affect node.Parent List estimatedValues1 = interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows).ToList(); node.Parent = parent; // restore parent OnlineCalculatorError errorState; double ssd = OnlineMeanAbsoluteErrorCalculator.Calculate(estimatedValues0, estimatedValues1, out errorState); if (range.Start <= ssd && ssd <= range.End) { selectedBranch = node; break; } } // perform the actual swap if (selectedBranch != null) Swap(crossoverPoint0, selectedBranch); return parent0; } } }