#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
///
/// Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity
///
[StorableType("88E56AF9-AD72-47E4-A613-8875703BD927")]
[Item(Name = "SymbolicRegressionSolution", Description = "Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity.")]
public sealed class SymbolicRegressionSolution : RegressionSolution, ISymbolicRegressionSolution {
private const string ModelLengthResultName = "Model Length";
private const string ModelDepthResultName = "Model Depth";
private const string EstimationLimitsResultsResultName = "Estimation Limits Results";
private const string EstimationLimitsResultName = "Estimation Limits";
private const string TrainingUpperEstimationLimitHitsResultName = "Training Upper Estimation Limit Hits";
private const string TestLowerEstimationLimitHitsResultName = "Test Lower Estimation Limit Hits";
private const string TrainingLowerEstimationLimitHitsResultName = "Training Lower Estimation Limit Hits";
private const string TestUpperEstimationLimitHitsResultName = "Test Upper Estimation Limit Hits";
private const string TrainingNaNEvaluationsResultName = "Training NaN Evaluations";
private const string TestNaNEvaluationsResultName = "Test NaN Evaluations";
private const string ModelBoundsResultName = "Model Bounds";
public new ISymbolicRegressionModel Model {
get { return (ISymbolicRegressionModel)base.Model; }
set { base.Model = value; }
}
ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
get { return (ISymbolicDataAnalysisModel)base.Model; }
}
public int ModelLength {
get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
}
public int ModelDepth {
get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
}
private ResultCollection EstimationLimitsResultCollection {
get { return (ResultCollection)this[EstimationLimitsResultsResultName].Value; }
}
public DoubleLimit EstimationLimits {
get { return (DoubleLimit)EstimationLimitsResultCollection[EstimationLimitsResultName].Value; }
}
public int TrainingUpperEstimationLimitHits {
get { return ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value; }
private set { ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value = value; }
}
public int TestUpperEstimationLimitHits {
get { return ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value; }
private set { ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value = value; }
}
public int TrainingLowerEstimationLimitHits {
get { return ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value; }
private set { ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value = value; }
}
public int TestLowerEstimationLimitHits {
get { return ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value; }
private set { ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value = value; }
}
public int TrainingNaNEvaluations {
get { return ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value; }
private set { ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value = value; }
}
public int TestNaNEvaluations {
get { return ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value; }
private set { ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value = value; }
}
public IntervalCollection ModelBoundsCollection {
get {
if (!ContainsKey(ModelBoundsResultName)) return null;
return (IntervalCollection)this[ModelBoundsResultName].Value;
}
private set {
if (ContainsKey(ModelBoundsResultName)) {
this[ModelBoundsResultName].Value = value;
} else {
Add(new Result(ModelBoundsResultName, "Results concerning the derivation of symbolic regression solution", value));
}
}
}
[StorableConstructor]
private SymbolicRegressionSolution(StorableConstructorFlag _) : base(_) { }
private SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicRegressionSolution(ISymbolicRegressionModel model, IRegressionProblemData problemData)
: base(model, problemData) {
foreach (var node in model.SymbolicExpressionTree.Root.IterateNodesPrefix().OfType())
node.SetGrammar(null);
Add(new Result(ModelLengthResultName, "Length of the symbolic regression model.", new IntValue()));
Add(new Result(ModelDepthResultName, "Depth of the symbolic regression model.", new IntValue()));
ResultCollection estimationLimitResults = new ResultCollection();
estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit()));
estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue()));
Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults));
if (IntervalInterpreter.IsCompatible(Model.SymbolicExpressionTree))
Add(new Result(ModelBoundsResultName, "Results concerning the derivation of symbolic regression solution", new IntervalCollection()));
RecalculateResults();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionSolution(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!ContainsKey(EstimationLimitsResultsResultName)) {
ResultCollection estimationLimitResults = new ResultCollection();
estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit()));
estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue()));
estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue()));
Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults));
CalculateResults();
}
if (!ContainsKey(ModelBoundsResultName)) {
if (IntervalInterpreter.IsCompatible(Model.SymbolicExpressionTree)) {
Add(new Result(ModelBoundsResultName, "Results concerning the derivation of symbolic regression solution", new IntervalCollection()));
CalculateResults();
}
}
}
protected override void RecalculateResults() {
base.RecalculateResults();
CalculateResults();
}
private void CalculateResults() {
ModelLength = Model.SymbolicExpressionTree.Length;
ModelDepth = Model.SymbolicExpressionTree.Depth;
EstimationLimits.Lower = Model.LowerEstimationLimit;
EstimationLimits.Upper = Model.UpperEstimationLimit;
TrainingUpperEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit));
TestUpperEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit));
TrainingLowerEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit));
TestLowerEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit));
TrainingNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TrainingIndices).Count(double.IsNaN);
TestNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TestIndices).Count(double.IsNaN);
//Check if the tree contains unknown symbols for the interval calculation
if (IntervalInterpreter.IsCompatible(Model.SymbolicExpressionTree))
ModelBoundsCollection = CalculateModelIntervals(this);
}
private static IntervalCollection CalculateModelIntervals(ISymbolicRegressionSolution solution) {
var intervalEvaluation = new IntervalCollection();
var interpreter = new IntervalInterpreter();
var problemData = solution.ProblemData;
var model = solution.Model;
var variableRanges = problemData.VariableRanges.GetReadonlyDictionary();
intervalEvaluation.AddInterval($"Target {problemData.TargetVariable}", new Interval(variableRanges[problemData.TargetVariable].LowerBound, variableRanges[problemData.TargetVariable].UpperBound));
intervalEvaluation.AddInterval("Model", interpreter.GetSymbolicExpressionTreeInterval(model.SymbolicExpressionTree, variableRanges));
if (DerivativeCalculator.IsCompatible(model.SymbolicExpressionTree)) {
foreach (var inputVariable in model.VariablesUsedForPrediction.OrderBy(v => v, new NaturalStringComparer())) {
var derivedModel = DerivativeCalculator.Derive(model.SymbolicExpressionTree, inputVariable);
var derivedResultInterval = interpreter.GetSymbolicExpressionTreeInterval(derivedModel, variableRanges);
intervalEvaluation.AddInterval(" ∂f/∂" + inputVariable, new Interval(derivedResultInterval.LowerBound, derivedResultInterval.UpperBound));
}
}
return intervalEvaluation;
}
}
}