#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HEAL.Attic;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
///
/// Represents a symbolic regression model
///
[StorableType("2739C33E-4DDB-4285-9DFB-C056D900B2F2")]
[Item(Name = "Symbolic Regression Model", Description = "Represents a symbolic regression model.")]
public class SymbolicRegressionModel : SymbolicDataAnalysisModel, ISymbolicRegressionModel {
[Storable]
private string targetVariable;
public string TargetVariable {
get { return targetVariable; }
set {
if (string.IsNullOrEmpty(value) || targetVariable == value) return;
targetVariable = value;
OnTargetVariableChanged(this, EventArgs.Empty);
}
}
[StorableConstructor]
protected SymbolicRegressionModel(StorableConstructorFlag _) : base(_) {
targetVariable = string.Empty;
}
protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner)
: base(original, cloner) {
this.targetVariable = original.targetVariable;
}
public SymbolicRegressionModel(string targetVariable, ISymbolicExpressionTree tree,
ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
: base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
this.targetVariable = targetVariable;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionModel(this, cloner);
}
public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
.LimitToRange(LowerEstimationLimit, UpperEstimationLimit);
}
public ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new SymbolicRegressionSolution(this, new RegressionProblemData(problemData));
}
IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
return CreateRegressionSolution(problemData);
}
public void Scale(IRegressionProblemData problemData) {
Scale(problemData, problemData.TargetVariable);
}
public virtual bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
}
public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
var regressionProblemData = problemData as IRegressionProblemData;
if (regressionProblemData == null)
throw new ArgumentException("The problem data is not compatible with this symbolic regression model. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
return IsProblemDataCompatible(regressionProblemData, out errorMessage);
}
#region events
public event EventHandler TargetVariableChanged;
private void OnTargetVariableChanged(object sender, EventArgs args) {
var changed = TargetVariableChanged;
if (changed != null)
changed(sender, args);
}
#endregion
}
}