#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.MainForm;
using HeuristicLab.Problems.DataAnalysis.Views;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views {
[View("Error Characteristics Curve")]
[Content(typeof(ISymbolicRegressionSolution))]
public partial class SymbolicRegressionSolutionErrorCharacteristicsCurveView : RegressionSolutionErrorCharacteristicsCurveView {
public SymbolicRegressionSolutionErrorCharacteristicsCurveView() {
InitializeComponent();
}
public new ISymbolicRegressionSolution Content {
get { return (ISymbolicRegressionSolution)base.Content; }
set { base.Content = value; }
}
private IRegressionSolution CreateLinearRegressionSolution() {
if (Content == null) throw new InvalidOperationException();
double rmse, cvRmsError;
var problemData = (IRegressionProblemData)ProblemData.Clone();
if (!problemData.TrainingIndices.Any()) return null; // don't create an LR model if the problem does not have a training set (e.g. loaded into an existing model)
var usedVariables = Content.Model.VariablesUsedForPrediction;
var usedDoubleVariables = usedVariables
.Where(name => problemData.Dataset.VariableHasType(name))
.Distinct();
var usedFactorVariables = usedVariables
.Where(name => problemData.Dataset.VariableHasType(name))
.Distinct();
// gkronber: for binary factors we actually produce a binary variable in the new dataset
// but only if the variable is not used as a full factor anyway (LR creates binary columns anyway)
var usedBinaryFactors =
Content.Model.SymbolicExpressionTree.IterateNodesPostfix().OfType()
.Where(node => !usedFactorVariables.Contains(node.VariableName))
.Select(node => Tuple.Create(node.VariableValue, node.VariableValue));
// create a new problem and dataset
var variableNames =
usedDoubleVariables
.Concat(usedFactorVariables)
.Concat(usedBinaryFactors.Select(t => t.Item1 + "=" + t.Item2))
.Concat(new string[] { problemData.TargetVariable })
.ToArray();
var variableValues =
usedDoubleVariables.Select(name => (IList)problemData.Dataset.GetDoubleValues(name).ToList())
.Concat(usedFactorVariables.Select(name => problemData.Dataset.GetStringValues(name).ToList()))
.Concat(
// create binary variable
usedBinaryFactors.Select(t => problemData.Dataset.GetReadOnlyStringValues(t.Item1).Select(val => val == t.Item2 ? 1.0 : 0.0).ToList())
)
.Concat(new[] { problemData.Dataset.GetDoubleValues(problemData.TargetVariable).ToList() });
var newDs = new Dataset(variableNames, variableValues);
var newProblemData = new RegressionProblemData(newDs, variableNames.Take(variableNames.Length - 1), variableNames.Last());
newProblemData.TrainingPartition.Start = problemData.TrainingPartition.Start;
newProblemData.TrainingPartition.End = problemData.TrainingPartition.End;
newProblemData.TestPartition.Start = problemData.TestPartition.Start;
newProblemData.TestPartition.End = problemData.TestPartition.End;
var solution = LinearRegression.CreateLinearRegressionSolution(newProblemData, out rmse, out cvRmsError);
solution.Name = "Baseline (linear subset)";
return solution;
}
protected override IEnumerable CreateBaselineSolutions() {
foreach (var sol in base.CreateBaselineSolutions()) yield return sol;
// does not support lagged variables
if (Content.Model.SymbolicExpressionTree.IterateNodesPrefix().OfType().Any()) yield break;
yield return CreateLinearRegressionSolution();
}
}
}