[5618] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5618] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System.Linq;
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
[5623] | 24 | using HeuristicLab.Data;
|
---|
[12103] | 25 | using HeuristicLab.Optimization;
|
---|
[5716] | 26 | using HeuristicLab.Parameters;
|
---|
[16565] | 27 | using HEAL.Attic;
|
---|
[5618] | 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
[12504] | 30 | [Item("Symbolic Classification Problem (multi-objective)", "Represents a multi objective symbolic classfication problem.")]
|
---|
[16565] | 31 | [StorableType("3CD66D22-59F2-43BA-A357-AA84C403EE61")]
|
---|
[12504] | 32 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 130)]
|
---|
[5733] | 33 | public class SymbolicClassificationMultiObjectiveProblem : SymbolicDataAnalysisMultiObjectiveProblem<IClassificationProblemData, ISymbolicClassificationMultiObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IClassificationProblem {
|
---|
[5618] | 34 | private const double PunishmentFactor = 10;
|
---|
[5685] | 35 | private const int InitialMaximumTreeDepth = 8;
|
---|
| 36 | private const int InitialMaximumTreeLength = 25;
|
---|
[5770] | 37 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 38 | private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model.";
|
---|
[8594] | 39 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
[5618] | 40 |
|
---|
[8594] | 41 |
|
---|
[5685] | 42 | #region parameter properties
|
---|
[5770] | 43 | public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 44 | get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
[5685] | 45 | }
|
---|
[8594] | 46 | public IValueParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
| 47 | get { return (IValueParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
| 48 | }
|
---|
[5685] | 49 | #endregion
|
---|
| 50 | #region properties
|
---|
[5770] | 51 | public DoubleLimit EstimationLimits {
|
---|
| 52 | get { return EstimationLimitsParameter.Value; }
|
---|
[5685] | 53 | }
|
---|
[8594] | 54 | public ISymbolicClassificationModelCreator ModelCreator {
|
---|
| 55 | get { return ModelCreatorParameter.Value; }
|
---|
| 56 | }
|
---|
[5685] | 57 | #endregion
|
---|
[5618] | 58 | [StorableConstructor]
|
---|
[16565] | 59 | protected SymbolicClassificationMultiObjectiveProblem(StorableConstructorFlag _) : base(_) { }
|
---|
[8175] | 60 | protected SymbolicClassificationMultiObjectiveProblem(SymbolicClassificationMultiObjectiveProblem original, Cloner cloner)
|
---|
| 61 | : base(original, cloner) {
|
---|
| 62 | RegisterEventHandlers();
|
---|
| 63 | }
|
---|
[5618] | 64 | public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationMultiObjectiveProblem(this, cloner); }
|
---|
| 65 |
|
---|
| 66 | public SymbolicClassificationMultiObjectiveProblem()
|
---|
| 67 | : base(new ClassificationProblemData(), new SymbolicClassificationMultiObjectiveMeanSquaredErrorTreeSizeEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
|
---|
[5847] | 68 | Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
|
---|
[8594] | 69 | Parameters.Add(new ValueParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "", new AccuracyMaximizingThresholdsModelCreator()));
|
---|
[5685] | 70 |
|
---|
[8664] | 71 | ApplyLinearScalingParameter.Value.Value = false;
|
---|
[5854] | 72 | EstimationLimitsParameter.Hidden = true;
|
---|
| 73 |
|
---|
[5623] | 74 | Maximization = new BoolArray(new bool[] { false, false });
|
---|
[5685] | 75 | MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
|
---|
| 76 | MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
|
---|
| 77 |
|
---|
[6803] | 78 |
|
---|
[8175] | 79 | RegisterEventHandlers();
|
---|
[6803] | 80 | ConfigureGrammarSymbols();
|
---|
[5685] | 81 | InitializeOperators();
|
---|
[5716] | 82 | UpdateEstimationLimits();
|
---|
[5618] | 83 | }
|
---|
| 84 |
|
---|
[8175] | 85 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 86 | private void AfterDeserialization() {
|
---|
[8883] | 87 | // BackwardsCompatibility3.4
|
---|
| 88 | #region Backwards compatible code, remove with 3.5
|
---|
[8594] | 89 | if (!Parameters.ContainsKey(ModelCreatorParameterName))
|
---|
| 90 | Parameters.Add(new ValueParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "", new AccuracyMaximizingThresholdsModelCreator()));
|
---|
[8883] | 91 | #endregion
|
---|
[8175] | 92 | RegisterEventHandlers();
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | private void RegisterEventHandlers() {
|
---|
| 96 | SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
|
---|
[8594] | 97 | ModelCreatorParameter.NameChanged += (o, e) => ParameterizeOperators();
|
---|
[8175] | 98 | }
|
---|
| 99 |
|
---|
[6803] | 100 | private void ConfigureGrammarSymbols() {
|
---|
| 101 | var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
|
---|
| 102 | if (grammar != null) grammar.ConfigureAsDefaultClassificationGrammar();
|
---|
| 103 | }
|
---|
| 104 |
|
---|
[5685] | 105 | private void InitializeOperators() {
|
---|
| 106 | Operators.Add(new SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer());
|
---|
| 107 | Operators.Add(new SymbolicClassificationMultiObjectiveValidationBestSolutionAnalyzer());
|
---|
[12103] | 108 | Operators.Add(new SymbolicExpressionTreePhenotypicSimilarityCalculator());
|
---|
| 109 | Operators.Add(new SymbolicClassificationPhenotypicDiversityAnalyzer(Operators.OfType<SymbolicExpressionTreePhenotypicSimilarityCalculator>()));
|
---|
[5685] | 110 | ParameterizeOperators();
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | private void UpdateEstimationLimits() {
|
---|
[8139] | 114 | if (ProblemData.TrainingIndices.Any()) {
|
---|
| 115 | var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
|
---|
[5618] | 116 | var mean = targetValues.Average();
|
---|
| 117 | var range = targetValues.Max() - targetValues.Min();
|
---|
[5770] | 118 | EstimationLimits.Upper = mean + PunishmentFactor * range;
|
---|
| 119 | EstimationLimits.Lower = mean - PunishmentFactor * range;
|
---|
[6754] | 120 | } else {
|
---|
| 121 | EstimationLimits.Upper = double.MaxValue;
|
---|
| 122 | EstimationLimits.Lower = double.MinValue;
|
---|
[5618] | 123 | }
|
---|
| 124 | }
|
---|
[5623] | 125 |
|
---|
[5685] | 126 | protected override void OnProblemDataChanged() {
|
---|
| 127 | base.OnProblemDataChanged();
|
---|
| 128 | UpdateEstimationLimits();
|
---|
| 129 | }
|
---|
| 130 |
|
---|
[8594] | 131 | protected override void ParameterizeOperators() {
|
---|
[5685] | 132 | base.ParameterizeOperators();
|
---|
[5770] | 133 | if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
|
---|
| 134 | var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
|
---|
[8594] | 135 | foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>())
|
---|
| 136 | op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
|
---|
| 137 | foreach (var op in operators.OfType<ISymbolicClassificationModelCreatorOperator>())
|
---|
| 138 | op.ModelCreatorParameter.ActualName = ModelCreatorParameter.Name;
|
---|
[5685] | 139 | }
|
---|
[12103] | 140 |
|
---|
| 141 | foreach (var op in Operators.OfType<ISolutionSimilarityCalculator>()) {
|
---|
| 142 | op.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
|
---|
| 143 | op.QualityVariableName = Evaluator.QualitiesParameter.ActualName;
|
---|
| 144 |
|
---|
| 145 | if (op is SymbolicExpressionTreePhenotypicSimilarityCalculator) {
|
---|
| 146 | var phenotypicSimilarityCalculator = (SymbolicExpressionTreePhenotypicSimilarityCalculator)op;
|
---|
| 147 | phenotypicSimilarityCalculator.ProblemData = ProblemData;
|
---|
| 148 | phenotypicSimilarityCalculator.Interpreter = SymbolicExpressionTreeInterpreter;
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
[5685] | 151 | }
|
---|
[5618] | 152 | }
|
---|
| 153 | }
|
---|