#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Drawing; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HEAL.Attic; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { [StorableType("87C4FF17-FC59-4D0F-80F5-2C84499E1222")] [Item("NormalDistributedThresholdsModelCreator", "")] public sealed class NormalDistributedThresholdsModelCreator : Item, ISymbolicDiscriminantFunctionClassificationModelCreator { public static new Image StaticItemImage { get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; } } public override Image ItemImage { get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; } } [StorableConstructor] private NormalDistributedThresholdsModelCreator(StorableConstructorFlag _) : base(_) { } private NormalDistributedThresholdsModelCreator(NormalDistributedThresholdsModelCreator original, Cloner cloner) : base(original, cloner) { } public NormalDistributedThresholdsModelCreator() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new NormalDistributedThresholdsModelCreator(this, cloner); } public ISymbolicClassificationModel CreateSymbolicClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) { return CreateSymbolicDiscriminantFunctionClassificationModel(targetVariable, tree, interpreter, lowerEstimationLimit, upperEstimationLimit); } public ISymbolicDiscriminantFunctionClassificationModel CreateSymbolicDiscriminantFunctionClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) { return new SymbolicDiscriminantFunctionClassificationModel(targetVariable, tree, interpreter, new NormalDistributionCutPointsThresholdCalculator(), lowerEstimationLimit, upperEstimationLimit); } } }