#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.Linq; using HeuristicLab.Algorithms.DataAnalysis; using HeuristicLab.MainForm; using HeuristicLab.Problems.DataAnalysis.Views.Classification; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views { [View("Solution Comparison")] [Content(typeof(ISymbolicClassificationSolution))] public partial class SolutionComparisonView : ClassificationSolutionComparisonView { public SolutionComparisonView() { InitializeComponent(); } public new ISymbolicClassificationSolution Content { get { return (ISymbolicClassificationSolution)base.Content; } set { base.Content = value; } } protected override IEnumerable GenerateClassificationSolutions() { var solutionsBase = base.GenerateClassificationSolutions(); var solutions = new List(); var symbolicSolution = Content; // does not support lagged variables if (symbolicSolution.Model.SymbolicExpressionTree.IterateNodesPrefix().OfType().Any()) return solutionsBase; var problemData = (IClassificationProblemData)symbolicSolution.ProblemData.Clone(); if (!problemData.TrainingIndices.Any()) return null; // don't create an comparison models if the problem does not have a training set (e.g. loaded into an existing model) var usedVariables = Content.Model.SymbolicExpressionTree.IterateNodesPostfix() .OfType() .Select(node => node.VariableName).ToArray(); var usedDoubleVariables = usedVariables .Where(name => problemData.Dataset.VariableHasType(name)) .Distinct(); var usedFactorVariables = usedVariables .Where(name => problemData.Dataset.VariableHasType(name)) .Distinct(); // gkronber: for binary factors we actually produce a binary variable in the new dataset // but only if the variable is not used as a full factor anyway (LR creates binary columns anyway) var usedBinaryFactors = Content.Model.SymbolicExpressionTree.IterateNodesPostfix().OfType() .Where(node => !usedFactorVariables.Contains(node.VariableName)) .Select(node => Tuple.Create(node.VariableValue, node.VariableValue)); // create a new problem and dataset var variableNames = usedDoubleVariables .Concat(usedFactorVariables) .Concat(usedBinaryFactors.Select(t => t.Item1 + "=" + t.Item2)) .Concat(new string[] { problemData.TargetVariable }) .ToArray(); var variableValues = usedDoubleVariables.Select(name => (IList)problemData.Dataset.GetDoubleValues(name).ToList()) .Concat(usedFactorVariables.Select(name => problemData.Dataset.GetStringValues(name).ToList())) .Concat( // create binary variable usedBinaryFactors.Select(t => problemData.Dataset.GetReadOnlyStringValues(t.Item1).Select(val => val == t.Item2 ? 1.0 : 0.0).ToList()) ) .Concat(new[] { problemData.Dataset.GetDoubleValues(problemData.TargetVariable).ToList() }); var newDs = new Dataset(variableNames, variableValues); var newProblemData = new ClassificationProblemData(newDs, variableNames.Take(variableNames.Length - 1), variableNames.Last()); foreach (var classValue in problemData.ClassValues) { newProblemData.SetClassName(classValue, problemData.GetClassName(classValue)); } newProblemData.PositiveClass = problemData.PositiveClass; newProblemData.TrainingPartition.Start = problemData.TrainingPartition.Start; newProblemData.TrainingPartition.End = problemData.TrainingPartition.End; newProblemData.TestPartition.Start = problemData.TestPartition.Start; newProblemData.TestPartition.End = problemData.TestPartition.End; try { var oneR = OneR.CreateOneRSolution(newProblemData); oneR.Name = "OneR Classification Solution (subset)"; solutions.Add(oneR); } catch (NotSupportedException) { } catch (ArgumentException) { } try { var lda = LinearDiscriminantAnalysis.CreateLinearDiscriminantAnalysisSolution(newProblemData); lda.Name = "Linear Discriminant Analysis Solution (subset)"; solutions.Add(lda); } catch (NotSupportedException) { } catch (ArgumentException) { } return solutionsBase.Concat(solutions); } } }