#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Joseph Helm and Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HEAL.Attic; namespace HeuristicLab.Problems.BinPacking3D { [StorableType("32c0ea29-26aa-45f2-8e7f-a2d9beab75b9")] public enum SortingMethod { All, Given, VolumeHeight, HeightVolume, AreaHeight, HeightArea, ClusteredAreaHeight, ClusteredHeightArea } [StorableType("bea57c08-7173-4cbb-915e-8c5954af3a50")] public enum FittingMethod { All, FirstFit, ResidualSpaceBestFit, FreeVolumeBestFit } [Item("Extreme-point-based Bin Packing (3d)", "An implementation of the extreme-point based packing described in Crainic, T. G., Perboli, G., & Tadei, R. (2008). Extreme point-based heuristics for three-dimensional bin packing. Informs Journal on computing, 20(3), 368-384.")] [StorableType("33F16B60-E562-4609-A6BE-A21B83BDA575")] [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 180)] public sealed class ExtremePointAlgorithm : BasicAlgorithm { public override Type ProblemType { get { return typeof(PermutationProblem); } } public new PermutationProblem Problem { get { return (PermutationProblem)base.Problem; } set { base.Problem = value; } } public override bool SupportsPause { get { return false; } } [Storable] private readonly IValueParameter> sortingMethodParameter; public IValueParameter> SortingMethodParameter { get { return sortingMethodParameter; } } [Storable] private readonly IValueParameter> fittingMethodParameter; public IValueParameter> FittingMethodParameter { get { return fittingMethodParameter; } } [Storable] private readonly IValueParameter deltaParameter; public IValueParameter DeltaParameter { get { return deltaParameter; } } [StorableConstructor] private ExtremePointAlgorithm(StorableConstructorFlag _) : base(_) { } private ExtremePointAlgorithm(ExtremePointAlgorithm original, Cloner cloner) : base(original, cloner) { sortingMethodParameter = cloner.Clone(original.sortingMethodParameter); fittingMethodParameter = cloner.Clone(original.fittingMethodParameter); deltaParameter = cloner.Clone(original.deltaParameter); } public ExtremePointAlgorithm() { Parameters.Add(sortingMethodParameter = new ValueParameter>("SortingMethod", "In which order the items should be packed.", new EnumValue(SortingMethod.All))); Parameters.Add(fittingMethodParameter = new ValueParameter>("FittingMethod", "Which method to fit should be used.", new EnumValue(FittingMethod.All))); Parameters.Add(deltaParameter = new ValueParameter("Delta", "[1;100]% Clustered sorting methods use a delta parameter to determine the clusters.", new PercentValue(.1))); Problem = new PermutationProblem(); } public override IDeepCloneable Clone(Cloner cloner) { return new ExtremePointAlgorithm(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } protected override void Run(CancellationToken token) { var items = Problem.Items; var bin = Problem.BinShape; var sorting = new[] { SortingMethodParameter.Value.Value }; if (sorting[0] == SortingMethod.All) { sorting = Enum.GetValues(typeof(SortingMethod)).Cast().Where(x => x != SortingMethod.All).ToArray(); } var fitting = new[] { fittingMethodParameter.Value.Value }; if (fitting[0] == FittingMethod.All) { fitting = Enum.GetValues(typeof(FittingMethod)).Cast().Where(x => x != FittingMethod.All).ToArray(); } var result = GetBest(bin, items, sorting, fitting, token); if (result == null) throw new InvalidOperationException("No result obtained!"); Results.Add(new Result("Best Solution", "The best found solution", result.Item1)); Results.Add(new Result("Best Solution Quality", "The quality of the best found solution according to the evaluator", new DoubleValue(result.Item2))); var binUtil = new BinUtilizationEvaluator(); var packRatio = new PackingRatioEvaluator(); Results.Add(new Result("Best Solution Bin Count", "The number of bins in the best found solution", new IntValue(result.Item1.NrOfBins))); Results.Add(new Result("Best Solution Bin Utilization", "The utilization given in percentage as calculated by the BinUtilizationEvaluator (total used space / total available space)", new PercentValue(Math.Round(binUtil.Evaluate(result.Item1), 3)))); if (result.Item3.HasValue && sorting.Length > 1) Results.Add(new Result("Best Sorting Method", "The sorting method that found the best solution", new EnumValue(result.Item3.Value))); if (result.Item4.HasValue && fitting.Length > 1) Results.Add(new Result("Best Fitting Method", "The fitting method that found the best solution", new EnumValue(result.Item4.Value))); } private Tuple GetBest(PackingShape bin, IList items, SortingMethod[] sortings, FittingMethod[] fittings, CancellationToken token) { SortingMethod? bestSorting = null; FittingMethod? bestFitting = null; var best = double.NaN; Solution bestSolution = null; foreach (var fit in fittings) { foreach (var sort in sortings) { var result = Optimize(bin, items, sort, fit, DeltaParameter.Value.Value, Problem.UseStackingConstraints, Problem.SolutionEvaluator, token); if (double.IsNaN(result.Item2) || double.IsInfinity(result.Item2)) continue; if (double.IsNaN(best) || Problem.Maximization && result.Item2 > best || !Problem.Maximization && result.Item2 < best) { bestSolution = result.Item1; best = result.Item2; bestSorting = sort; bestFitting = fit; } if (token.IsCancellationRequested) return Tuple.Create(bestSolution, best, bestSorting, bestFitting); } } if (double.IsNaN(best)) return null; return Tuple.Create(bestSolution, best, bestSorting, bestFitting); } private static Tuple Optimize(PackingShape bin, IList items, SortingMethod sorting, FittingMethod fitting, double delta, bool stackingConstraints, IEvaluator evaluator, CancellationToken token) { Permutation sorted = null; switch (sorting) { case SortingMethod.Given: sorted = new Permutation(PermutationTypes.Absolute, Enumerable.Range(0, items.Count).ToArray()); break; case SortingMethod.VolumeHeight: sorted = new Permutation(PermutationTypes.Absolute, items.Select((v, i) => new { Index = i, Item = v }) .OrderByDescending(x => x.Item.Depth * x.Item.Width * x.Item.Height) .ThenByDescending(x => x.Item.Height) .Select(x => x.Index).ToArray()); break; case SortingMethod.HeightVolume: sorted = new Permutation(PermutationTypes.Absolute, items.Select((v, i) => new { Index = i, Item = v }) .OrderByDescending(x => x.Item.Height) .ThenByDescending(x => x.Item.Depth * x.Item.Width * x.Item.Height) .Select(x => x.Index).ToArray()); break; case SortingMethod.AreaHeight: sorted = new Permutation(PermutationTypes.Absolute, items.Select((v, i) => new { Index = i, Item = v }) .OrderByDescending(x => x.Item.Depth * x.Item.Width) .ThenByDescending(x => x.Item.Height) .Select(x => x.Index).ToArray()); break; case SortingMethod.HeightArea: sorted = new Permutation(PermutationTypes.Absolute, items.Select((v, i) => new { Index = i, Item = v }) .OrderByDescending(x => x.Item.Height) .ThenByDescending(x => x.Item.Depth * x.Item.Width) .Select(x => x.Index).ToArray()); break; case SortingMethod.ClusteredAreaHeight: double clusterRange = bin.Width * bin.Depth * delta; sorted = new Permutation(PermutationTypes.Absolute, items.Select((v, i) => new { Index = i, Item = v, ClusterId = (int)(Math.Ceiling(v.Width * v.Depth / clusterRange)) }) .GroupBy(x => x.ClusterId) .Select(x => new { Cluster = x.Key, Items = x.OrderByDescending(y => y.Item.Height).ToList() }) .OrderByDescending(x => x.Cluster) .SelectMany(x => x.Items) .Select(x => x.Index).ToArray()); break; case SortingMethod.ClusteredHeightArea: double clusterRange2 = bin.Height * delta; sorted = new Permutation(PermutationTypes.Absolute, items.Select((v, i) => new { Index = i, Item = v, ClusterId = (int)(Math.Ceiling(v.Height / clusterRange2)) }) .GroupBy(x => x.ClusterId) .Select(x => new { Cluster = x.Key, Items = x.OrderByDescending(y => y.Item.Depth * y.Item.Width).ToList() }) .OrderByDescending(x => x.Cluster) .SelectMany(x => x.Items) .Select(x => x.Index).ToArray()); break; default: throw new ArgumentException("Unknown sorting method: " + sorting); } ExtremePointPermutationDecoderBase decoder = null; switch (fitting) { case FittingMethod.FirstFit: decoder = new ExtremePointPermutationDecoder(); break; case FittingMethod.FreeVolumeBestFit: decoder = new FreeVolumeBestFitExtremePointPermutationDecoder(); break; case FittingMethod.ResidualSpaceBestFit: decoder = new ResidualSpaceBestFitExtremePointPermutationDecoder(); break; default: throw new ArgumentException("Unknown fitting method: " + fitting); } var sol = decoder.Decode(sorted, bin, items, stackingConstraints); var fit = evaluator.Evaluate(sol); return Tuple.Create(sol, fit); } } }