#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Threading.Tasks; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HEAL.Attic; namespace HeuristicLab.Optimization.Operators { /// /// A base class for items that perform similarity calculation between two solutions. /// [Item("SimilarityCalculator", "A base class for items that perform similarity calculation between two solutions.")] [StorableType("ACDF2895-0C4E-4C34-A091-F41EF5C78241")] public abstract class SolutionSimilarityCalculator : Item, ISolutionSimilarityCalculator { protected abstract bool IsCommutative { get; } #region Properties [Storable] public string SolutionVariableName { get; set; } [Storable] public string QualityVariableName { get; set; } [Storable] public bool ExecuteInParallel { get; set; } [Storable] public int MaxDegreeOfParallelism { get; set; } #endregion [StorableConstructor] protected SolutionSimilarityCalculator(StorableConstructorFlag _) : base(_) { } protected SolutionSimilarityCalculator(SolutionSimilarityCalculator original, Cloner cloner) : base(original, cloner) { SolutionVariableName = original.SolutionVariableName; QualityVariableName = original.QualityVariableName; ExecuteInParallel = original.ExecuteInParallel; MaxDegreeOfParallelism = original.MaxDegreeOfParallelism; } protected SolutionSimilarityCalculator() : base() { ExecuteInParallel = false; MaxDegreeOfParallelism = -1; } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (MaxDegreeOfParallelism == 0) { ExecuteInParallel = false; MaxDegreeOfParallelism = -1; } } public double[][] CalculateSolutionCrowdSimilarity(IScope leftSolutionCrowd, IScope rightSolutionCrowd) { if (leftSolutionCrowd == null || rightSolutionCrowd == null) throw new ArgumentException("Cannot calculate similarity because one of the provided crowds or both are null."); var leftIndividuals = leftSolutionCrowd.SubScopes; var rightIndividuals = rightSolutionCrowd.SubScopes; if (!leftIndividuals.Any() || !rightIndividuals.Any()) throw new ArgumentException("Cannot calculate similarity because one of the provided crowds or both are empty."); var similarityMatrix = new double[leftIndividuals.Count][]; for (int i = 0; i < leftIndividuals.Count; i++) { similarityMatrix[i] = new double[rightIndividuals.Count]; for (int j = 0; j < rightIndividuals.Count; j++) { similarityMatrix[i][j] = CalculateSolutionSimilarity(leftIndividuals[i], rightIndividuals[j]); } } return similarityMatrix; } public double[][] CalculateSolutionCrowdSimilarity(IScope solutionCrowd) { if (solutionCrowd == null) { throw new ArgumentException("Cannot calculate similarity because the provided crowd is null."); } var individuals = solutionCrowd.SubScopes; if (!individuals.Any()) { throw new ArgumentException("Cannot calculate similarity because the provided crowd is empty."); } var similarityMatrix = new double[individuals.Count][]; for (int i = 0; i < individuals.Count; i++) { similarityMatrix[i] = new double[individuals.Count]; } if (ExecuteInParallel) { var parallelOptions = new ParallelOptions { MaxDegreeOfParallelism = MaxDegreeOfParallelism }; if (IsCommutative) { Parallel.For(0, individuals.Count, parallelOptions, i => { for (int j = i; j < individuals.Count; j++) { similarityMatrix[i][j] = similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[i], individuals[j]); } }); } else { Parallel.For(0, individuals.Count, parallelOptions, i => { for (int j = i; j < individuals.Count; j++) { similarityMatrix[i][j] = CalculateSolutionSimilarity(individuals[i], individuals[j]); if (i == j) continue; similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[j], individuals[i]); } }); } } else { if (IsCommutative) { for (int i = 0; i < individuals.Count; i++) { for (int j = i; j < individuals.Count; j++) { similarityMatrix[i][j] = similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[i], individuals[j]); } } } else { for (int i = 0; i < individuals.Count; i++) { for (int j = i; j < individuals.Count; j++) { similarityMatrix[i][j] = CalculateSolutionSimilarity(individuals[i], individuals[j]); if (i == j) continue; similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[j], individuals[i]); } } } } return similarityMatrix; } public abstract double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution); public virtual bool Equals(IScope x, IScope y) { if (ReferenceEquals(x, y)) return true; if (x == null || y == null) return false; var q1 = x.Variables[QualityVariableName].Value; var q2 = y.Variables[QualityVariableName].Value; return CheckQualityEquality(q1, q2) && CalculateSolutionSimilarity(x, y).IsAlmost(1.0); } public virtual int GetHashCode(IScope scope) { var quality = scope.Variables[QualityVariableName].Value; var dv = quality as DoubleValue; if (dv != null) return dv.Value.GetHashCode(); var da = quality as DoubleArray; if (da != null) { int hash = 17; unchecked { for (int i = 0; i < da.Length; ++i) { hash += hash * 23 + da[i].GetHashCode(); } return hash; } } return 0; } private static bool CheckQualityEquality(IItem q1, IItem q2) { var d1 = q1 as DoubleValue; var d2 = q2 as DoubleValue; if (d1 != null && d2 != null) return d1.Value.IsAlmost(d2.Value); var da1 = q1 as DoubleArray; var da2 = q2 as DoubleArray; if (da1 != null && da2 != null) { if (da1.Length != da2.Length) throw new ArgumentException("The quality arrays must have the same length."); for (int i = 0; i < da1.Length; ++i) { if (!da1[i].IsAlmost(da2[i])) return false; } return true; } throw new ArgumentException("Could not determine quality equality."); } } }