/************************************************************************* ALGLIB 3.15.0 (source code generated 2019-02-20) Copyright (c) Sergey Bochkanov (ALGLIB project). >>> SOURCE LICENSE >>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation (www.fsf.org); either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses >>> END OF LICENSE >>> *************************************************************************/ #pragma warning disable 162 #pragma warning disable 164 #pragma warning disable 219 using System; public partial class alglib { /************************************************************************* 1-dimensional complex FFT. Array size N may be arbitrary number (composite or prime). Composite N's are handled with cache-oblivious variation of a Cooley-Tukey algorithm. Small prime-factors are transformed using hard coded codelets (similar to FFTW codelets, but without low-level optimization), large prime-factors are handled with Bluestein's algorithm. Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only), most fast for powers of 2. When N have prime factors larger than these, but orders of magnitude smaller than N, computations will be about 4 times slower than for nearby highly composite N's. When N itself is prime, speed will be 6 times lower. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - complex function to be transformed N - problem size OUTPUT PARAMETERS A - DFT of a input array, array[0..N-1] A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1) -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************/ public static void fftc1d(ref complex[] a, int n) { fft.fftc1d(ref a, n, null); } public static void fftc1d(ref complex[] a, int n, alglib.xparams _params) { fft.fftc1d(ref a, n, _params); } public static void fftc1d(ref complex[] a) { int n; n = ap.len(a); fft.fftc1d(ref a, n, null); return; } public static void fftc1d(ref complex[] a, alglib.xparams _params) { int n; n = ap.len(a); fft.fftc1d(ref a, n, _params); return; } /************************************************************************* 1-dimensional complex inverse FFT. Array size N may be arbitrary number (composite or prime). Algorithm has O(N*logN) complexity for any N (composite or prime). See FFTC1D() description for more information about algorithm performance. INPUT PARAMETERS A - array[0..N-1] - complex array to be transformed N - problem size OUTPUT PARAMETERS A - inverse DFT of a input array, array[0..N-1] A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1) -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************/ public static void fftc1dinv(ref complex[] a, int n) { fft.fftc1dinv(ref a, n, null); } public static void fftc1dinv(ref complex[] a, int n, alglib.xparams _params) { fft.fftc1dinv(ref a, n, _params); } public static void fftc1dinv(ref complex[] a) { int n; n = ap.len(a); fft.fftc1dinv(ref a, n, null); return; } public static void fftc1dinv(ref complex[] a, alglib.xparams _params) { int n; n = ap.len(a); fft.fftc1dinv(ref a, n, _params); return; } /************************************************************************* 1-dimensional real FFT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS F - DFT of a input array, array[0..N-1] F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1) NOTE: F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half of array is usually needed. But for convinience subroutine returns full complex array (with frequencies above N/2), so its result may be used by other FFT-related subroutines. -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************/ public static void fftr1d(double[] a, int n, out complex[] f) { f = new complex[0]; fft.fftr1d(a, n, ref f, null); } public static void fftr1d(double[] a, int n, out complex[] f, alglib.xparams _params) { f = new complex[0]; fft.fftr1d(a, n, ref f, _params); } public static void fftr1d(double[] a, out complex[] f) { int n; f = new complex[0]; n = ap.len(a); fft.fftr1d(a, n, ref f, null); return; } public static void fftr1d(double[] a, out complex[] f, alglib.xparams _params) { int n; f = new complex[0]; n = ap.len(a); fft.fftr1d(a, n, ref f, _params); return; } /************************************************************************* 1-dimensional real inverse FFT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS F - array[0..floor(N/2)] - frequencies from forward real FFT N - problem size OUTPUT PARAMETERS A - inverse DFT of a input array, array[0..N-1] NOTE: F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one half of frequencies array is needed - elements from 0 to floor(N/2). F[0] is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then F[floor(N/2)] has no special properties. Relying on properties noted above, FFTR1DInv subroutine uses only elements from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case N is even it ignores imaginary part of F[floor(N/2)] too. When you call this function using full arguments list - "FFTR1DInv(F,N,A)" - you can pass either either frequencies array with N elements or reduced array with roughly N/2 elements - subroutine will successfully transform both. If you call this function using reduced arguments list - "FFTR1DInv(F,A)" - you must pass FULL array with N elements (although higher N/2 are still not used) because array size is used to automatically determine FFT length -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************/ public static void fftr1dinv(complex[] f, int n, out double[] a) { a = new double[0]; fft.fftr1dinv(f, n, ref a, null); } public static void fftr1dinv(complex[] f, int n, out double[] a, alglib.xparams _params) { a = new double[0]; fft.fftr1dinv(f, n, ref a, _params); } public static void fftr1dinv(complex[] f, out double[] a) { int n; a = new double[0]; n = ap.len(f); fft.fftr1dinv(f, n, ref a, null); return; } public static void fftr1dinv(complex[] f, out double[] a, alglib.xparams _params) { int n; a = new double[0]; n = ap.len(f); fft.fftr1dinv(f, n, ref a, _params); return; } } public partial class alglib { /************************************************************************* 1-dimensional Fast Hartley Transform. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS A - FHT of a input array, array[0..N-1], A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1) -- ALGLIB -- Copyright 04.06.2009 by Bochkanov Sergey *************************************************************************/ public static void fhtr1d(ref double[] a, int n) { fht.fhtr1d(ref a, n, null); } public static void fhtr1d(ref double[] a, int n, alglib.xparams _params) { fht.fhtr1d(ref a, n, _params); } /************************************************************************* 1-dimensional inverse FHT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - complex array to be transformed N - problem size OUTPUT PARAMETERS A - inverse FHT of a input array, array[0..N-1] -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************/ public static void fhtr1dinv(ref double[] a, int n) { fht.fhtr1dinv(ref a, n, null); } public static void fhtr1dinv(ref double[] a, int n, alglib.xparams _params) { fht.fhtr1dinv(ref a, n, _params); } } public partial class alglib { /************************************************************************* 1-dimensional complex convolution. For given A/B returns conv(A,B) (non-circular). Subroutine can automatically choose between three implementations: straightforward O(M*N) formula for very small N (or M), overlap-add algorithm for cases where max(M,N) is significantly larger than min(M,N), but O(M*N) algorithm is too slow, and general FFT-based formula for cases where two previois algorithms are too slow. Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N. INPUT PARAMETERS A - array[0..M-1] - complex function to be transformed M - problem size B - array[0..N-1] - complex function to be transformed N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-2]. NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convc1d(complex[] a, int m, complex[] b, int n, out complex[] r) { r = new complex[0]; conv.convc1d(a, m, b, n, ref r, null); } public static void convc1d(complex[] a, int m, complex[] b, int n, out complex[] r, alglib.xparams _params) { r = new complex[0]; conv.convc1d(a, m, b, n, ref r, _params); } /************************************************************************* 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - response N - response length, N<=M OUTPUT PARAMETERS R - deconvolved signal. array[0..M-N]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convc1dinv(complex[] a, int m, complex[] b, int n, out complex[] r) { r = new complex[0]; conv.convc1dinv(a, m, b, n, ref r, null); } public static void convc1dinv(complex[] a, int m, complex[] b, int n, out complex[] r, alglib.xparams _params) { r = new complex[0]; conv.convc1dinv(a, m, b, n, ref r, _params); } /************************************************************************* 1-dimensional circular complex convolution. For given S/R returns conv(S,R) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: normal convolution is commutative, i.e. it is symmetric - conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a signal, periodic function, and another - R - is a response, non-periodic function with limited length. INPUT PARAMETERS S - array[0..M-1] - complex periodic signal M - problem size B - array[0..N-1] - complex non-periodic response N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convc1dcircular(complex[] s, int m, complex[] r, int n, out complex[] c) { c = new complex[0]; conv.convc1dcircular(s, m, r, n, ref c, null); } public static void convc1dcircular(complex[] s, int m, complex[] r, int n, out complex[] c, alglib.xparams _params) { c = new complex[0]; conv.convc1dcircular(s, m, r, n, ref c, _params); } /************************************************************************* 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved periodic signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - non-periodic response N - response length OUTPUT PARAMETERS R - deconvolved signal. array[0..M-1]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convc1dcircularinv(complex[] a, int m, complex[] b, int n, out complex[] r) { r = new complex[0]; conv.convc1dcircularinv(a, m, b, n, ref r, null); } public static void convc1dcircularinv(complex[] a, int m, complex[] b, int n, out complex[] r, alglib.xparams _params) { r = new complex[0]; conv.convc1dcircularinv(a, m, b, n, ref r, _params); } /************************************************************************* 1-dimensional real convolution. Analogous to ConvC1D(), see ConvC1D() comments for more details. INPUT PARAMETERS A - array[0..M-1] - real function to be transformed M - problem size B - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-2]. NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convr1d(double[] a, int m, double[] b, int n, out double[] r) { r = new double[0]; conv.convr1d(a, m, b, n, ref r, null); } public static void convr1d(double[] a, int m, double[] b, int n, out double[] r, alglib.xparams _params) { r = new double[0]; conv.convr1d(a, m, b, n, ref r, _params); } /************************************************************************* 1-dimensional real deconvolution (inverse of ConvC1D()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - response N - response length, N<=M OUTPUT PARAMETERS R - deconvolved signal. array[0..M-N]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convr1dinv(double[] a, int m, double[] b, int n, out double[] r) { r = new double[0]; conv.convr1dinv(a, m, b, n, ref r, null); } public static void convr1dinv(double[] a, int m, double[] b, int n, out double[] r, alglib.xparams _params) { r = new double[0]; conv.convr1dinv(a, m, b, n, ref r, _params); } /************************************************************************* 1-dimensional circular real convolution. Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details. INPUT PARAMETERS S - array[0..M-1] - real signal M - problem size B - array[0..N-1] - real response N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convr1dcircular(double[] s, int m, double[] r, int n, out double[] c) { c = new double[0]; conv.convr1dcircular(s, m, r, n, ref c, null); } public static void convr1dcircular(double[] s, int m, double[] r, int n, out double[] c, alglib.xparams _params) { c = new double[0]; conv.convr1dcircular(s, m, r, n, ref c, _params); } /************************************************************************* 1-dimensional complex deconvolution (inverse of ConvC1D()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - response N - response length OUTPUT PARAMETERS R - deconvolved signal. array[0..M-N]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convr1dcircularinv(double[] a, int m, double[] b, int n, out double[] r) { r = new double[0]; conv.convr1dcircularinv(a, m, b, n, ref r, null); } public static void convr1dcircularinv(double[] a, int m, double[] b, int n, out double[] r, alglib.xparams _params) { r = new double[0]; conv.convr1dcircularinv(a, m, b, n, ref r, _params); } } public partial class alglib { /************************************************************************* 1-dimensional complex cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (non-circular). Correlation is calculated using reduction to convolution. Algorithm with max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info about performance). IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - complex function to be transformed, signal containing pattern N - problem size Pattern - array[0..M-1] - complex function to be transformed, pattern to search withing signal M - problem size OUTPUT PARAMETERS R - cross-correlation, array[0..N+M-2]: * positive lags are stored in R[0..N-1], R[i] = sum(conj(pattern[j])*signal[i+j] * negative lags are stored in R[N..N+M-2], R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j] NOTE: It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero on [-K..M-1], you can still use this subroutine, just shift result by K. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrc1d(complex[] signal, int n, complex[] pattern, int m, out complex[] r) { r = new complex[0]; corr.corrc1d(signal, n, pattern, m, ref r, null); } public static void corrc1d(complex[] signal, int n, complex[] pattern, int m, out complex[] r, alglib.xparams _params) { r = new complex[0]; corr.corrc1d(signal, n, pattern, m, ref r, _params); } /************************************************************************* 1-dimensional circular complex cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - complex function to be transformed, periodic signal containing pattern N - problem size Pattern - array[0..M-1] - complex function to be transformed, non-periodic pattern to search withing signal M - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrc1dcircular(complex[] signal, int m, complex[] pattern, int n, out complex[] c) { c = new complex[0]; corr.corrc1dcircular(signal, m, pattern, n, ref c, null); } public static void corrc1dcircular(complex[] signal, int m, complex[] pattern, int n, out complex[] c, alglib.xparams _params) { c = new complex[0]; corr.corrc1dcircular(signal, m, pattern, n, ref c, _params); } /************************************************************************* 1-dimensional real cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (non-circular). Correlation is calculated using reduction to convolution. Algorithm with max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info about performance). IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - real function to be transformed, signal containing pattern N - problem size Pattern - array[0..M-1] - real function to be transformed, pattern to search withing signal M - problem size OUTPUT PARAMETERS R - cross-correlation, array[0..N+M-2]: * positive lags are stored in R[0..N-1], R[i] = sum(pattern[j]*signal[i+j] * negative lags are stored in R[N..N+M-2], R[N+M-1-i] = sum(pattern[j]*signal[-i+j] NOTE: It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero on [-K..M-1], you can still use this subroutine, just shift result by K. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrr1d(double[] signal, int n, double[] pattern, int m, out double[] r) { r = new double[0]; corr.corrr1d(signal, n, pattern, m, ref r, null); } public static void corrr1d(double[] signal, int n, double[] pattern, int m, out double[] r, alglib.xparams _params) { r = new double[0]; corr.corrr1d(signal, n, pattern, m, ref r, _params); } /************************************************************************* 1-dimensional circular real cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - real function to be transformed, periodic signal containing pattern N - problem size Pattern - array[0..M-1] - real function to be transformed, non-periodic pattern to search withing signal M - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrr1dcircular(double[] signal, int m, double[] pattern, int n, out double[] c) { c = new double[0]; corr.corrr1dcircular(signal, m, pattern, n, ref c, null); } public static void corrr1dcircular(double[] signal, int m, double[] pattern, int n, out double[] c, alglib.xparams _params) { c = new double[0]; corr.corrr1dcircular(signal, m, pattern, n, ref c, _params); } } public partial class alglib { public class fft { /************************************************************************* 1-dimensional complex FFT. Array size N may be arbitrary number (composite or prime). Composite N's are handled with cache-oblivious variation of a Cooley-Tukey algorithm. Small prime-factors are transformed using hard coded codelets (similar to FFTW codelets, but without low-level optimization), large prime-factors are handled with Bluestein's algorithm. Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only), most fast for powers of 2. When N have prime factors larger than these, but orders of magnitude smaller than N, computations will be about 4 times slower than for nearby highly composite N's. When N itself is prime, speed will be 6 times lower. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - complex function to be transformed N - problem size OUTPUT PARAMETERS A - DFT of a input array, array[0..N-1] A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1) -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************/ public static void fftc1d(ref complex[] a, int n, alglib.xparams _params) { ftbase.fasttransformplan plan = new ftbase.fasttransformplan(); int i = 0; double[] buf = new double[0]; alglib.ap.assert(n>0, "FFTC1D: incorrect N!"); alglib.ap.assert(alglib.ap.len(a)>=n, "FFTC1D: Length(A)0, "FFTC1DInv: incorrect N!"); alglib.ap.assert(alglib.ap.len(a)>=n, "FFTC1DInv: Length(A)0, "FFTR1D: incorrect N!"); alglib.ap.assert(alglib.ap.len(a)>=n, "FFTR1D: Length(A)0, "FFTR1DInv: incorrect N!"); alglib.ap.assert(alglib.ap.len(f)>=(int)Math.Floor((double)n/(double)2)+1, "FFTR1DInv: Length(F)0 && n%2==0, "FFTR1DEvenInplace: incorrect N!"); // // Special cases: // * N=2 // // After this block we assume that N is strictly greater than 2 // if( n==2 ) { x = a[0]+a[1]; y = a[0]-a[1]; a[0] = x; a[1] = y; return; } // // even-size real FFT, use reduction to the complex task // n2 = n/2; for(i_=0; i_<=n-1;i_++) { buf[i_] = a[i_]; } ftbase.ftapplyplan(plan, buf, 0, 1, _params); a[0] = buf[0]+buf[1]; for(i=1; i<=n2-1; i++) { idx = 2*(i%n2); hn.x = buf[idx+0]; hn.y = buf[idx+1]; idx = 2*(n2-i); hmnc.x = buf[idx+0]; hmnc.y = -buf[idx+1]; v.x = -Math.Sin(-(2*Math.PI*i/n)); v.y = Math.Cos(-(2*Math.PI*i/n)); v = hn+hmnc-v*(hn-hmnc); a[2*i+0] = 0.5*v.x; a[2*i+1] = 0.5*v.y; } a[1] = buf[0]-buf[1]; } /************************************************************************* Internal subroutine. Never call it directly! -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************/ public static void fftr1dinvinternaleven(ref double[] a, int n, ref double[] buf, ftbase.fasttransformplan plan, alglib.xparams _params) { double x = 0; double y = 0; double t = 0; int i = 0; int n2 = 0; alglib.ap.assert(n>0 && n%2==0, "FFTR1DInvInternalEven: incorrect N!"); // // Special cases: // * N=2 // // After this block we assume that N is strictly greater than 2 // if( n==2 ) { x = 0.5*(a[0]+a[1]); y = 0.5*(a[0]-a[1]); a[0] = x; a[1] = y; return; } // // inverse real FFT is reduced to the inverse real FHT, // which is reduced to the forward real FHT, // which is reduced to the forward real FFT. // // Don't worry, it is really compact and efficient reduction :) // n2 = n/2; buf[0] = a[0]; for(i=1; i<=n2-1; i++) { x = a[2*i+0]; y = a[2*i+1]; buf[i] = x-y; buf[n-i] = x+y; } buf[n2] = a[1]; fftr1dinternaleven(ref buf, n, ref a, plan, _params); a[0] = buf[0]/n; t = (double)1/(double)n; for(i=1; i<=n2-1; i++) { x = buf[2*i+0]; y = buf[2*i+1]; a[i] = t*(x-y); a[n-i] = t*(x+y); } a[n2] = buf[1]/n; } } public class fht { /************************************************************************* 1-dimensional Fast Hartley Transform. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS A - FHT of a input array, array[0..N-1], A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1) -- ALGLIB -- Copyright 04.06.2009 by Bochkanov Sergey *************************************************************************/ public static void fhtr1d(ref double[] a, int n, alglib.xparams _params) { int i = 0; complex[] fa = new complex[0]; alglib.ap.assert(n>0, "FHTR1D: incorrect N!"); // // Special case: N=1, FHT is just identity transform. // After this block we assume that N is strictly greater than 1. // if( n==1 ) { return; } // // Reduce FHt to real FFT // fft.fftr1d(a, n, ref fa, _params); for(i=0; i<=n-1; i++) { a[i] = fa[i].x-fa[i].y; } } /************************************************************************* 1-dimensional inverse FHT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - complex array to be transformed N - problem size OUTPUT PARAMETERS A - inverse FHT of a input array, array[0..N-1] -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************/ public static void fhtr1dinv(ref double[] a, int n, alglib.xparams _params) { int i = 0; alglib.ap.assert(n>0, "FHTR1DInv: incorrect N!"); // // Special case: N=1, iFHT is just identity transform. // After this block we assume that N is strictly greater than 1. // if( n==1 ) { return; } // // Inverse FHT can be expressed in terms of the FHT as // // invfht(x) = fht(x)/N // fhtr1d(ref a, n, _params); for(i=0; i<=n-1; i++) { a[i] = a[i]/n; } } } public class conv { /************************************************************************* 1-dimensional complex convolution. For given A/B returns conv(A,B) (non-circular). Subroutine can automatically choose between three implementations: straightforward O(M*N) formula for very small N (or M), overlap-add algorithm for cases where max(M,N) is significantly larger than min(M,N), but O(M*N) algorithm is too slow, and general FFT-based formula for cases where two previois algorithms are too slow. Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N. INPUT PARAMETERS A - array[0..M-1] - complex function to be transformed M - problem size B - array[0..N-1] - complex function to be transformed N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-2]. NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convc1d(complex[] a, int m, complex[] b, int n, ref complex[] r, alglib.xparams _params) { r = new complex[0]; alglib.ap.assert(n>0 && m>0, "ConvC1D: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer that B. // if( m0 && m>0) && n<=m, "ConvC1DInv: incorrect N or M!"); p = ftbase.ftbasefindsmooth(m, _params); ftbase.ftcomplexfftplan(p, 1, plan, _params); buf = new double[2*p]; for(i=0; i<=m-1; i++) { buf[2*i+0] = a[i].x; buf[2*i+1] = a[i].y; } for(i=m; i<=p-1; i++) { buf[2*i+0] = 0; buf[2*i+1] = 0; } buf2 = new double[2*p]; for(i=0; i<=n-1; i++) { buf2[2*i+0] = b[i].x; buf2[2*i+1] = b[i].y; } for(i=n; i<=p-1; i++) { buf2[2*i+0] = 0; buf2[2*i+1] = 0; } ftbase.ftapplyplan(plan, buf, 0, 1, _params); ftbase.ftapplyplan(plan, buf2, 0, 1, _params); for(i=0; i<=p-1; i++) { c1.x = buf[2*i+0]; c1.y = buf[2*i+1]; c2.x = buf2[2*i+0]; c2.y = buf2[2*i+1]; c3 = c1/c2; buf[2*i+0] = c3.x; buf[2*i+1] = -c3.y; } ftbase.ftapplyplan(plan, buf, 0, 1, _params); t = (double)1/(double)p; r = new complex[m-n+1]; for(i=0; i<=m-n; i++) { r[i].x = t*buf[2*i+0]; r[i].y = -(t*buf[2*i+1]); } } /************************************************************************* 1-dimensional circular complex convolution. For given S/R returns conv(S,R) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: normal convolution is commutative, i.e. it is symmetric - conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a signal, periodic function, and another - R - is a response, non-periodic function with limited length. INPUT PARAMETERS S - array[0..M-1] - complex periodic signal M - problem size B - array[0..N-1] - complex non-periodic response N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convc1dcircular(complex[] s, int m, complex[] r, int n, ref complex[] c, alglib.xparams _params) { complex[] buf = new complex[0]; int i1 = 0; int i2 = 0; int j2 = 0; int i_ = 0; int i1_ = 0; c = new complex[0]; alglib.ap.assert(n>0 && m>0, "ConvC1DCircular: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer (at least - not shorter) that B. // if( m0 && m>0, "ConvC1DCircularInv: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer (at least - not shorter) that B. // if( m0 && m>0, "ConvR1D: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer that B. // if( m0 && m>0) && n<=m, "ConvR1DInv: incorrect N or M!"); p = ftbase.ftbasefindsmootheven(m, _params); buf = new double[p]; for(i_=0; i_<=m-1;i_++) { buf[i_] = a[i_]; } for(i=m; i<=p-1; i++) { buf[i] = 0; } buf2 = new double[p]; for(i_=0; i_<=n-1;i_++) { buf2[i_] = b[i_]; } for(i=n; i<=p-1; i++) { buf2[i] = 0; } buf3 = new double[p]; ftbase.ftcomplexfftplan(p/2, 1, plan, _params); fft.fftr1dinternaleven(ref buf, p, ref buf3, plan, _params); fft.fftr1dinternaleven(ref buf2, p, ref buf3, plan, _params); buf[0] = buf[0]/buf2[0]; buf[1] = buf[1]/buf2[1]; for(i=1; i<=p/2-1; i++) { c1.x = buf[2*i+0]; c1.y = buf[2*i+1]; c2.x = buf2[2*i+0]; c2.y = buf2[2*i+1]; c3 = c1/c2; buf[2*i+0] = c3.x; buf[2*i+1] = c3.y; } fft.fftr1dinvinternaleven(ref buf, p, ref buf3, plan, _params); r = new double[m-n+1]; for(i_=0; i_<=m-n;i_++) { r[i_] = buf[i_]; } } /************************************************************************* 1-dimensional circular real convolution. Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details. INPUT PARAMETERS S - array[0..M-1] - real signal M - problem size B - array[0..N-1] - real response N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void convr1dcircular(double[] s, int m, double[] r, int n, ref double[] c, alglib.xparams _params) { double[] buf = new double[0]; int i1 = 0; int i2 = 0; int j2 = 0; int i_ = 0; int i1_ = 0; c = new double[0]; alglib.ap.assert(n>0 && m>0, "ConvC1DCircular: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer (at least - not shorter) that B. // if( m0 && m>0, "ConvR1DCircularInv: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer (at least - not shorter) that B. // if( m0 && m>0, "ConvC1DX: incorrect N or M!"); alglib.ap.assert(n<=m, "ConvC1DX: N0 && m>0, "ConvC1DX: incorrect N or M!"); alglib.ap.assert(n<=m, "ConvC1DX: N2 - we should call small case code otherwise // if( alg==1 ) { alglib.ap.assert(m+n-1>2, "ConvR1DX: internal error!"); if( (circular && ftbase.ftbaseissmooth(m, _params)) && m%2==0 ) { // // special code for circular convolution with smooth even M // buf = new double[m]; for(i_=0; i_<=m-1;i_++) { buf[i_] = a[i_]; } buf2 = new double[m]; for(i_=0; i_<=n-1;i_++) { buf2[i_] = b[i_]; } for(i=n; i<=m-1; i++) { buf2[i] = 0; } buf3 = new double[m]; ftbase.ftcomplexfftplan(m/2, 1, plan, _params); fft.fftr1dinternaleven(ref buf, m, ref buf3, plan, _params); fft.fftr1dinternaleven(ref buf2, m, ref buf3, plan, _params); buf[0] = buf[0]*buf2[0]; buf[1] = buf[1]*buf2[1]; for(i=1; i<=m/2-1; i++) { ax = buf[2*i+0]; ay = buf[2*i+1]; bx = buf2[2*i+0]; by = buf2[2*i+1]; tx = ax*bx-ay*by; ty = ax*by+ay*bx; buf[2*i+0] = tx; buf[2*i+1] = ty; } fft.fftr1dinvinternaleven(ref buf, m, ref buf3, plan, _params); r = new double[m]; for(i_=0; i_<=m-1;i_++) { r[i_] = buf[i_]; } } else { // // M is non-smooth or non-even, general code (circular/non-circular): // * first part is the same for circular and non-circular // convolutions. zero padding, FFTs, inverse FFTs // * second part differs: // * for non-circular convolution we just copy array // * for circular convolution we add array tail to its head // p = ftbase.ftbasefindsmootheven(m+n-1, _params); buf = new double[p]; for(i_=0; i_<=m-1;i_++) { buf[i_] = a[i_]; } for(i=m; i<=p-1; i++) { buf[i] = 0; } buf2 = new double[p]; for(i_=0; i_<=n-1;i_++) { buf2[i_] = b[i_]; } for(i=n; i<=p-1; i++) { buf2[i] = 0; } buf3 = new double[p]; ftbase.ftcomplexfftplan(p/2, 1, plan, _params); fft.fftr1dinternaleven(ref buf, p, ref buf3, plan, _params); fft.fftr1dinternaleven(ref buf2, p, ref buf3, plan, _params); buf[0] = buf[0]*buf2[0]; buf[1] = buf[1]*buf2[1]; for(i=1; i<=p/2-1; i++) { ax = buf[2*i+0]; ay = buf[2*i+1]; bx = buf2[2*i+0]; by = buf2[2*i+1]; tx = ax*bx-ay*by; ty = ax*by+ay*bx; buf[2*i+0] = tx; buf[2*i+1] = ty; } fft.fftr1dinvinternaleven(ref buf, p, ref buf3, plan, _params); if( circular ) { // // circular, add tail to head // r = new double[m]; for(i_=0; i_<=m-1;i_++) { r[i_] = buf[i_]; } if( n>=2 ) { i1_ = (m) - (0); for(i_=0; i_<=n-2;i_++) { r[i_] = r[i_] + buf[i_+i1_]; } } } else { // // non-circular, just copy // r = new double[m+n-1]; for(i_=0; i_<=m+n-2;i_++) { r[i_] = buf[i_]; } } } return; } // // overlap-add method // if( alg==2 ) { alglib.ap.assert((q+n-1)%2==0, "ConvR1DX: internal error!"); buf = new double[q+n-1]; buf2 = new double[q+n-1]; buf3 = new double[q+n-1]; ftbase.ftcomplexfftplan((q+n-1)/2, 1, plan, _params); // // prepare R // if( circular ) { r = new double[m]; for(i=0; i<=m-1; i++) { r[i] = 0; } } else { r = new double[m+n-1]; for(i=0; i<=m+n-2; i++) { r[i] = 0; } } // // pre-calculated FFT(B) // for(i_=0; i_<=n-1;i_++) { buf2[i_] = b[i_]; } for(j=n; j<=q+n-2; j++) { buf2[j] = 0; } fft.fftr1dinternaleven(ref buf2, q+n-1, ref buf3, plan, _params); // // main overlap-add cycle // i = 0; while( i<=m-1 ) { p = Math.Min(q, m-i); i1_ = (i) - (0); for(i_=0; i_<=p-1;i_++) { buf[i_] = a[i_+i1_]; } for(j=p; j<=q+n-2; j++) { buf[j] = 0; } fft.fftr1dinternaleven(ref buf, q+n-1, ref buf3, plan, _params); buf[0] = buf[0]*buf2[0]; buf[1] = buf[1]*buf2[1]; for(j=1; j<=(q+n-1)/2-1; j++) { ax = buf[2*j+0]; ay = buf[2*j+1]; bx = buf2[2*j+0]; by = buf2[2*j+1]; tx = ax*bx-ay*by; ty = ax*by+ay*bx; buf[2*j+0] = tx; buf[2*j+1] = ty; } fft.fftr1dinvinternaleven(ref buf, q+n-1, ref buf3, plan, _params); if( circular ) { j1 = Math.Min(i+p+n-2, m-1)-i; j2 = j1+1; } else { j1 = p+n-2; j2 = j1+1; } i1_ = (0) - (i); for(i_=i; i_<=i+j1;i_++) { r[i_] = r[i_] + buf[i_+i1_]; } if( p+n-2>=j2 ) { i1_ = (j2) - (0); for(i_=0; i_<=p+n-2-j2;i_++) { r[i_] = r[i_] + buf[i_+i1_]; } } i = i+p; } return; } } } public class corr { /************************************************************************* 1-dimensional complex cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (non-circular). Correlation is calculated using reduction to convolution. Algorithm with max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info about performance). IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - complex function to be transformed, signal containing pattern N - problem size Pattern - array[0..M-1] - complex function to be transformed, pattern to search withing signal M - problem size OUTPUT PARAMETERS R - cross-correlation, array[0..N+M-2]: * positive lags are stored in R[0..N-1], R[i] = sum(conj(pattern[j])*signal[i+j] * negative lags are stored in R[N..N+M-2], R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j] NOTE: It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero on [-K..M-1], you can still use this subroutine, just shift result by K. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrc1d(complex[] signal, int n, complex[] pattern, int m, ref complex[] r, alglib.xparams _params) { complex[] p = new complex[0]; complex[] b = new complex[0]; int i = 0; int i_ = 0; int i1_ = 0; r = new complex[0]; alglib.ap.assert(n>0 && m>0, "CorrC1D: incorrect N or M!"); p = new complex[m]; for(i=0; i<=m-1; i++) { p[m-1-i] = math.conj(pattern[i]); } conv.convc1d(p, m, signal, n, ref b, _params); r = new complex[m+n-1]; i1_ = (m-1) - (0); for(i_=0; i_<=n-1;i_++) { r[i_] = b[i_+i1_]; } if( m+n-2>=n ) { i1_ = (0) - (n); for(i_=n; i_<=m+n-2;i_++) { r[i_] = b[i_+i1_]; } } } /************************************************************************* 1-dimensional circular complex cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - complex function to be transformed, periodic signal containing pattern N - problem size Pattern - array[0..M-1] - complex function to be transformed, non-periodic pattern to search withing signal M - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrc1dcircular(complex[] signal, int m, complex[] pattern, int n, ref complex[] c, alglib.xparams _params) { complex[] p = new complex[0]; complex[] b = new complex[0]; int i1 = 0; int i2 = 0; int i = 0; int j2 = 0; int i_ = 0; int i1_ = 0; c = new complex[0]; alglib.ap.assert(n>0 && m>0, "ConvC1DCircular: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer (at least - not shorter) that B. // if( m0 && m>0, "CorrR1D: incorrect N or M!"); p = new double[m]; for(i=0; i<=m-1; i++) { p[m-1-i] = pattern[i]; } conv.convr1d(p, m, signal, n, ref b, _params); r = new double[m+n-1]; i1_ = (m-1) - (0); for(i_=0; i_<=n-1;i_++) { r[i_] = b[i_+i1_]; } if( m+n-2>=n ) { i1_ = (0) - (n); for(i_=n; i_<=m+n-2;i_++) { r[i_] = b[i_+i1_]; } } } /************************************************************************* 1-dimensional circular real cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - real function to be transformed, periodic signal containing pattern N - problem size Pattern - array[0..M-1] - real function to be transformed, non-periodic pattern to search withing signal M - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************/ public static void corrr1dcircular(double[] signal, int m, double[] pattern, int n, ref double[] c, alglib.xparams _params) { double[] p = new double[0]; double[] b = new double[0]; int i1 = 0; int i2 = 0; int i = 0; int j2 = 0; int i_ = 0; int i1_ = 0; c = new double[0]; alglib.ap.assert(n>0 && m>0, "ConvC1DCircular: incorrect N or M!"); // // normalize task: make M>=N, // so A will be longer (at least - not shorter) that B. // if( m