#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HEAL.Attic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Random; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { [NonDiscoverableType] [StorableType("AA3649C4-18CF-480B-AA41-F5D6F148B494")] [Item("BalancedTreeCreator", "An operator that produces trees with a specified distribution")] public class BalancedTreeCreator : SymbolicExpressionTreeCreator { private const string IrregularityBiasParameterName = "IrregularityBias"; public IFixedValueParameter IrregularityBiasParameter { get { return (IFixedValueParameter)Parameters[IrregularityBiasParameterName]; } } public double IrregularityBias { get { return IrregularityBiasParameter.Value.Value; } set { IrregularityBiasParameter.Value.Value = value; } } [StorableConstructor] protected BalancedTreeCreator(StorableConstructorFlag _) : base(_) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(IrregularityBiasParameterName)) { Parameters.Add(new FixedValueParameter(IrregularityBiasParameterName, new PercentValue(0.0))); } } protected BalancedTreeCreator(BalancedTreeCreator original, Cloner cloner) : base(original, cloner) { } public BalancedTreeCreator() { Parameters.Add(new FixedValueParameter(IrregularityBiasParameterName, new PercentValue(0.0))); } public override IDeepCloneable Clone(Cloner cloner) { return new BalancedTreeCreator(this, cloner); } public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth) { return Create(random, grammar, maxLength, maxDepth, IrregularityBias); } public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth, double irregularityBias = 0) { int targetLength = random.Next(3, maxLength); // because we have 2 extra nodes for the root and start symbols, and the end is exclusive return CreateExpressionTree(random, grammar, targetLength, maxDepth, irregularityBias); } public static ISymbolicExpressionTree CreateExpressionTree(IRandom random, ISymbolicExpressionGrammar grammar, int targetLength, int maxDepth, double irregularityBias = 1) { // even lengths cannot be achieved without symbols of odd arity // therefore we randomly pick a neighbouring odd length value var tree = MakeStump(random, grammar); // create a stump consisting of just a ProgramRootSymbol and a StartSymbol CreateExpression(random, tree.Root.GetSubtree(0), targetLength - tree.Length, maxDepth - 2, irregularityBias); // -2 because the stump has length 2 and depth 2 return tree; } private static ISymbolicExpressionTreeNode SampleNode(IRandom random, ISymbolicExpressionTreeGrammar grammar, IEnumerable allowedSymbols, int minChildArity, int maxChildArity) { var candidates = new List(); var weights = new List(); foreach (var s in allowedSymbols) { var minSubtreeCount = grammar.GetMinimumSubtreeCount(s); var maxSubtreeCount = grammar.GetMaximumSubtreeCount(s); if (maxChildArity < minSubtreeCount || minChildArity > maxSubtreeCount) { continue; } candidates.Add(s); weights.Add(s.InitialFrequency); } var symbol = candidates.SampleProportional(random, 1, weights).First(); var node = symbol.CreateTreeNode(); if (node.HasLocalParameters) { node.ResetLocalParameters(random); } return node; } public static void CreateExpression(IRandom random, ISymbolicExpressionTreeNode root, int targetLength, int maxDepth, double irregularityBias = 1) { var grammar = root.Grammar; var minSubtreeCount = grammar.GetMinimumSubtreeCount(root.Symbol); var maxSubtreeCount = grammar.GetMinimumSubtreeCount(root.Symbol); var arity = random.Next(minSubtreeCount, maxSubtreeCount + 1); int openSlots = arity; var allowedSymbols = grammar.AllowedSymbols.Where(x => !(x is ProgramRootSymbol || x is GroupSymbol || x is Defun || x is StartSymbol)).ToList(); bool hasUnarySymbols = allowedSymbols.Any(x => grammar.GetMinimumSubtreeCount(x) <= 1 && grammar.GetMaximumSubtreeCount(x) >= 1); if (!hasUnarySymbols && targetLength % 2 == 0) { // without functions of arity 1 some target lengths cannot be reached targetLength = random.NextDouble() < 0.5 ? targetLength - 1 : targetLength + 1; } var tuples = new List(targetLength) { new NodeInfo { Node = root, Depth = 0, Arity = arity } }; // we use tuples.Count instead of targetLength in the if condition // because depth limits may prevent reaching the target length for (int i = 0; i < tuples.Count; ++i) { var t = tuples[i]; var node = t.Node; for (int childIndex = 0; childIndex < t.Arity; ++childIndex) { // min and max arity here refer to the required arity limits for the child node int minChildArity = 0; int maxChildArity = 0; var allowedChildSymbols = allowedSymbols.Where(x => grammar.IsAllowedChildSymbol(node.Symbol, x, childIndex)).ToList(); // if we are reaching max depth we have to fill the slot with a leaf node (max arity will be zero) // otherwise, find the maximum value from the grammar which does not exceed the length limit if (t.Depth < maxDepth - 1 && openSlots < targetLength) { // we don't want to allow sampling a leaf symbol if it prevents us from reaching the target length // this should be allowed only when we have enough open expansion points (more than one) // the random check against the irregularity bias helps to increase shape variability when the conditions are met int minAllowedArity = allowedChildSymbols.Min(x => grammar.GetMaximumSubtreeCount(x)); if (minAllowedArity == 0 && (openSlots - tuples.Count <= 1 || random.NextDouble() > irregularityBias)) { minAllowedArity = 1; } // finally adjust min and max arity according to the expansion limits int maxAllowedArity = allowedChildSymbols.Max(x => grammar.GetMaximumSubtreeCount(x)); maxChildArity = Math.Min(maxAllowedArity, targetLength - openSlots); minChildArity = Math.Min(minAllowedArity, maxChildArity); } // sample a random child with the arity limits var child = SampleNode(random, grammar, allowedChildSymbols, minChildArity, maxChildArity); // get actual child arity limits minChildArity = Math.Max(minChildArity, grammar.GetMinimumSubtreeCount(child.Symbol)); maxChildArity = Math.Min(maxChildArity, grammar.GetMaximumSubtreeCount(child.Symbol)); minChildArity = Math.Min(minChildArity, maxChildArity); // pick a random arity for the new child node var childArity = random.Next(minChildArity, maxChildArity + 1); var childDepth = t.Depth + 1; node.AddSubtree(child); tuples.Add(new NodeInfo { Node = child, Depth = childDepth, Arity = childArity }); openSlots += childArity; } } } protected override ISymbolicExpressionTree Create(IRandom random) { var maxLength = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value; var maxDepth = MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value; var grammar = ClonedSymbolicExpressionTreeGrammarParameter.ActualValue; return Create(random, grammar, maxLength, maxDepth); } #region helpers private class NodeInfo { public ISymbolicExpressionTreeNode Node; public int Depth; public int Arity; } private static ISymbolicExpressionTree MakeStump(IRandom random, ISymbolicExpressionGrammar grammar) { SymbolicExpressionTree tree = new SymbolicExpressionTree(); var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode(); if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random); rootNode.SetGrammar(grammar.CreateExpressionTreeGrammar()); var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode(); if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random); startNode.SetGrammar(grammar.CreateExpressionTreeGrammar()); rootNode.AddSubtree(startNode); tree.Root = rootNode; return tree; } public void CreateExpression(IRandom random, ISymbolicExpressionTreeNode seedNode, int maxTreeLength, int maxTreeDepth) { CreateExpression(random, seedNode, maxTreeLength, maxTreeDepth, IrregularityBias); } #endregion } }