1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Optimization;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Encodings.RealVectorEncoding {
|
---|
30 | [Item("StochasticPolynomialMultiMoveGenerator", "Generates polynomial moves from a given real vector.")]
|
---|
31 | [StorableType("94B0F4BE-E2CE-4521-8351-AAA21611D589")]
|
---|
32 | public class StochasticPolynomialMultiMoveGenerator : AdditiveMoveGenerator, IMultiMoveGenerator {
|
---|
33 | /// <summary>
|
---|
34 | /// The maximum manipulation parameter specifies the range of the manipulation. The value specified here is the highest value the mutation will ever add to the current value.
|
---|
35 | /// </summary>
|
---|
36 | public ValueLookupParameter<DoubleValue> MaximumManipulationParameter {
|
---|
37 | get { return (ValueLookupParameter<DoubleValue>)Parameters["MaximumManipulation"]; }
|
---|
38 | }
|
---|
39 | /// <summary>
|
---|
40 | /// The contiguity parameter specifies the shape of the probability density function that controls the mutation. Setting it to 0 is similar to a uniform distribution over the entire manipulation range (specified by <see cref="MaximumManipulationParameter"/>.
|
---|
41 | /// A higher value will shape the density function such that values closer to 0 (little manipulation) are more likely than values closer to 1 or -1 (maximum manipulation).
|
---|
42 | /// </summary>
|
---|
43 | public IValueLookupParameter<DoubleValue> ContiguityParameter {
|
---|
44 | get { return (IValueLookupParameter<DoubleValue>)Parameters["Contiguity"]; }
|
---|
45 | }
|
---|
46 | public IValueLookupParameter<IntValue> SampleSizeParameter {
|
---|
47 | get { return (IValueLookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | [StorableConstructor]
|
---|
51 | protected StochasticPolynomialMultiMoveGenerator(StorableConstructorFlag _) : base(_) { }
|
---|
52 | protected StochasticPolynomialMultiMoveGenerator(StochasticPolynomialMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
|
---|
53 | public StochasticPolynomialMultiMoveGenerator()
|
---|
54 | : base() {
|
---|
55 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Contiguity", "Specifies whether the manipulation should produce far stretching (small value) or close (large value) manipulations with higher probability. Valid values must be greater or equal to 0.", new DoubleValue(2)));
|
---|
56 | Parameters.Add(new ValueLookupParameter<IntValue>("SampleSize", "The number of moves that should be generated."));
|
---|
57 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumManipulation", "Specifies the maximum value that should be added or subtracted by the manipulation. If this value is set to 0 no mutation will be performed.", new DoubleValue(1)));
|
---|
58 | }
|
---|
59 |
|
---|
60 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
61 | return new StochasticPolynomialMultiMoveGenerator(this, cloner);
|
---|
62 | }
|
---|
63 |
|
---|
64 | public static AdditiveMove[] Apply(IRandom random, RealVector vector, double contiguity, int sampleSize, double maxManipulation, DoubleMatrix bounds) {
|
---|
65 | AdditiveMove[] moves = new AdditiveMove[sampleSize];
|
---|
66 | for (int i = 0; i < sampleSize; i++) {
|
---|
67 | int index = random.Next(vector.Length);
|
---|
68 | double strength = 0, min = bounds[index % bounds.Rows, 0], max = bounds[index % bounds.Rows, 1];
|
---|
69 | do {
|
---|
70 | strength = PolynomialOnePositionManipulator.Apply(random, contiguity) * maxManipulation;
|
---|
71 | } while (vector[index] + strength < min || vector[index] + strength > max);
|
---|
72 | moves[i] = new AdditiveMove(index, strength);
|
---|
73 | }
|
---|
74 | return moves;
|
---|
75 | }
|
---|
76 |
|
---|
77 | protected override AdditiveMove[] GenerateMoves(IRandom random, RealVector realVector, DoubleMatrix bounds) {
|
---|
78 | return Apply(random, realVector, ContiguityParameter.ActualValue.Value, SampleSizeParameter.ActualValue.Value, MaximumManipulationParameter.ActualValue.Value, bounds);
|
---|
79 | }
|
---|
80 | }
|
---|
81 | }
|
---|