#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HEAL.Attic; using HeuristicLab.Random; namespace HeuristicLab.Encodings.RealVectorEncoding { [Item("StochasticNormalMultiMoveGenerator", "Generates normal distributed moves from a given real vector.")] [StorableType("2FCED1E2-2F4F-440A-9402-AA908DF0887B")] public class StochasticNormalMultiMoveGenerator : AdditiveMoveGenerator, IMultiMoveGenerator { public IValueLookupParameter SigmaParameter { get { return (IValueLookupParameter)Parameters["Sigma"]; } } public IValueLookupParameter SampleSizeParameter { get { return (IValueLookupParameter)Parameters["SampleSize"]; } } [StorableConstructor] protected StochasticNormalMultiMoveGenerator(StorableConstructorFlag _) : base(_) { } protected StochasticNormalMultiMoveGenerator(StochasticNormalMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { } public StochasticNormalMultiMoveGenerator() : base() { Parameters.Add(new ValueLookupParameter("Sigma", "The standard deviation of the normal distribution.", new DoubleValue(1))); Parameters.Add(new ValueLookupParameter("SampleSize", "The number of moves that should be generated.")); } public override IDeepCloneable Clone(Cloner cloner) { return new StochasticNormalMultiMoveGenerator(this, cloner); } public static AdditiveMove[] Apply(IRandom random, RealVector vector, double sigma, int sampleSize, DoubleMatrix bounds) { AdditiveMove[] moves = new AdditiveMove[sampleSize]; NormalDistributedRandom N = new NormalDistributedRandom(random, 0, sigma); for (int i = 0; i < sampleSize; i++) { int index = random.Next(vector.Length); double strength = 0, min = bounds[index % bounds.Rows, 0], max = bounds[index % bounds.Rows, 1]; do { strength = N.NextDouble(); } while (vector[index] + strength < min || vector[index] + strength > max); moves[i] = new AdditiveMove(index, strength); } return moves; } protected override AdditiveMove[] GenerateMoves(IRandom random, RealVector realVector, DoubleMatrix bounds) { return Apply(random, realVector, SigmaParameter.ActualValue.Value, SampleSizeParameter.ActualValue.Value, bounds); } } }