#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HEAL.Attic;
using HeuristicLab.Problems.Binary;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
// This code is based off the publication
// B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
// and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
[Item("Parameter-less Population Pyramid (P3)", "Binary value optimization algorithm which requires no configuration. B. W. Goldman and W. F. Punch, Parameter-less Population Pyramid, GECCO, pp. 785–792, 2014")]
[StorableType("CAD84CAB-1ECC-4D76-BDC5-701AAF690E17")]
[Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
public class ParameterlessPopulationPyramid : BasicAlgorithm {
public override Type ProblemType {
get { return typeof(BinaryProblem); }
}
public new BinaryProblem Problem {
get { return (BinaryProblem)base.Problem; }
set { base.Problem = value; }
}
[Storable]
private readonly IRandom random = new MersenneTwister();
[Storable]
private List pyramid = new List();
[Storable]
private EvaluationTracker tracker;
// Tracks all solutions in Pyramid for quick membership checks
private HashSet seen = new HashSet(new EnumerableBoolEqualityComparer());
[Storable]
private IEnumerable StorableSeen {
get { return seen; }
set { seen = new HashSet(value, new EnumerableBoolEqualityComparer()); }
}
#region ParameterNames
private const string MaximumIterationsParameterName = "Maximum Iterations";
private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
private const string MaximumRuntimeParameterName = "Maximum Runtime";
private const string SeedParameterName = "Seed";
private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
#endregion
#region ParameterProperties
public IFixedValueParameter MaximumIterationsParameter {
get { return (IFixedValueParameter)Parameters[MaximumIterationsParameterName]; }
}
public IFixedValueParameter MaximumEvaluationsParameter {
get { return (IFixedValueParameter)Parameters[MaximumEvaluationsParameterName]; }
}
public IFixedValueParameter MaximumRuntimeParameter {
get { return (IFixedValueParameter)Parameters[MaximumRuntimeParameterName]; }
}
public IFixedValueParameter SeedParameter {
get { return (IFixedValueParameter)Parameters[SeedParameterName]; }
}
public FixedValueParameter SetSeedRandomlyParameter {
get { return (FixedValueParameter)Parameters[SetSeedRandomlyParameterName]; }
}
#endregion
#region Properties
public int MaximumIterations {
get { return MaximumIterationsParameter.Value.Value; }
set { MaximumIterationsParameter.Value.Value = value; }
}
public int MaximumEvaluations {
get { return MaximumEvaluationsParameter.Value.Value; }
set { MaximumEvaluationsParameter.Value.Value = value; }
}
public int MaximumRuntime {
get { return MaximumRuntimeParameter.Value.Value; }
set { MaximumRuntimeParameter.Value.Value = value; }
}
public int Seed {
get { return SeedParameter.Value.Value; }
set { SeedParameter.Value.Value = value; }
}
public bool SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value.Value; }
set { SetSeedRandomlyParameter.Value.Value = value; }
}
#endregion
#region ResultsProperties
private double ResultsBestQuality {
get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
}
private BinaryVector ResultsBestSolution {
get { return (BinaryVector)Results["Best Solution"].Value; }
set { Results["Best Solution"].Value = value; }
}
private int ResultsBestFoundOnEvaluation {
get { return ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value; }
set { ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value = value; }
}
private int ResultsEvaluations {
get { return ((IntValue)Results["Evaluations"].Value).Value; }
set { ((IntValue)Results["Evaluations"].Value).Value = value; }
}
private int ResultsIterations {
get { return ((IntValue)Results["Iterations"].Value).Value; }
set { ((IntValue)Results["Iterations"].Value).Value = value; }
}
private DataTable ResultsQualities {
get { return ((DataTable)Results["Qualities"].Value); }
}
private DataRow ResultsQualitiesBest {
get { return ResultsQualities.Rows["Best Quality"]; }
}
private DataRow ResultsQualitiesIteration {
get { return ResultsQualities.Rows["Iteration Quality"]; }
}
private DataRow ResultsLevels {
get { return ((DataTable)Results["Pyramid Levels"].Value).Rows["Levels"]; }
}
private DataRow ResultsSolutions {
get { return ((DataTable)Results["Stored Solutions"].Value).Rows["Solutions"]; }
}
#endregion
public override bool SupportsPause { get { return true; } }
[StorableConstructor]
protected ParameterlessPopulationPyramid(StorableConstructorFlag _) : base(_) { }
protected ParameterlessPopulationPyramid(ParameterlessPopulationPyramid original, Cloner cloner)
: base(original, cloner) {
random = cloner.Clone(original.random);
pyramid = original.pyramid.Select(cloner.Clone).ToList();
tracker = cloner.Clone(original.tracker);
seen = new HashSet(original.seen.Select(cloner.Clone), new EnumerableBoolEqualityComparer());
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ParameterlessPopulationPyramid(this, cloner);
}
public ParameterlessPopulationPyramid() : base() {
Parameters.Add(new FixedValueParameter(MaximumIterationsParameterName, "", new IntValue(Int32.MaxValue)));
Parameters.Add(new FixedValueParameter(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue)));
Parameters.Add(new FixedValueParameter(MaximumRuntimeParameterName, "The maximum runtime in seconds after which the algorithm stops. Use -1 to specify no limit for the runtime", new IntValue(3600)));
Parameters.Add(new FixedValueParameter(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
}
protected override void OnExecutionTimeChanged() {
base.OnExecutionTimeChanged();
if (CancellationTokenSource == null) return;
if (MaximumRuntime == -1) return;
if (ExecutionTime.TotalSeconds > MaximumRuntime) CancellationTokenSource.Cancel();
}
private void AddIfUnique(BinaryVector solution, int level) {
// Don't add things you have seen
if (seen.Contains(solution)) return;
if (level == pyramid.Count) {
pyramid.Add(new Population(tracker.Length, random));
}
var copied = (BinaryVector)solution.Clone();
pyramid[level].Add(copied);
seen.Add(copied);
}
// In the GECCO paper, Figure 1
private double iterate() {
// Create a random solution
BinaryVector solution = new BinaryVector(tracker.Length);
for (int i = 0; i < solution.Length; i++) {
solution[i] = random.Next(2) == 1;
}
double fitness = tracker.Evaluate(solution, random);
fitness = HillClimber.ImproveToLocalOptimum(tracker, solution, fitness, random);
AddIfUnique(solution, 0);
for (int level = 0; level < pyramid.Count; level++) {
var current = pyramid[level];
double newFitness = LinkageCrossover.ImproveUsingTree(current.Tree, current.Solutions, solution, fitness, tracker, random);
// add it to the next level if its a strict fitness improvement
if (tracker.IsBetter(newFitness, fitness)) {
fitness = newFitness;
AddIfUnique(solution, level + 1);
}
}
return fitness;
}
protected override void Initialize(CancellationToken cancellationToken) {
// Set up the algorithm
if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
pyramid = new List();
seen.Clear();
random.Reset(Seed);
tracker = new EvaluationTracker(Problem, MaximumEvaluations);
// Set up the results display
Results.Add(new Result("Iterations", new IntValue(0)));
Results.Add(new Result("Evaluations", new IntValue(0)));
Results.Add(new Result("Best Solution", new BinaryVector(tracker.BestSolution)));
Results.Add(new Result("Best Quality", new DoubleValue(tracker.BestQuality)));
Results.Add(new Result("Evaluation Best Solution Was Found", new IntValue(tracker.BestFoundOnEvaluation)));
var table = new DataTable("Qualities");
table.Rows.Add(new DataRow("Best Quality"));
var iterationRows = new DataRow("Iteration Quality");
iterationRows.VisualProperties.LineStyle = DataRowVisualProperties.DataRowLineStyle.Dot;
table.Rows.Add(iterationRows);
Results.Add(new Result("Qualities", table));
table = new DataTable("Pyramid Levels");
table.Rows.Add(new DataRow("Levels"));
Results.Add(new Result("Pyramid Levels", table));
table = new DataTable("Stored Solutions");
table.Rows.Add(new DataRow("Solutions"));
Results.Add(new Result("Stored Solutions", table));
base.Initialize(cancellationToken);
}
protected override void Run(CancellationToken cancellationToken) {
// Loop until iteration limit reached or canceled.
while (ResultsIterations < MaximumIterations) {
double fitness = double.NaN;
try {
fitness = iterate();
ResultsIterations++;
cancellationToken.ThrowIfCancellationRequested();
}
finally {
ResultsEvaluations = tracker.Evaluations;
ResultsBestSolution = new BinaryVector(tracker.BestSolution);
ResultsBestQuality = tracker.BestQuality;
ResultsBestFoundOnEvaluation = tracker.BestFoundOnEvaluation;
ResultsQualitiesBest.Values.Add(tracker.BestQuality);
ResultsQualitiesIteration.Values.Add(fitness);
ResultsLevels.Values.Add(pyramid.Count);
ResultsSolutions.Values.Add(seen.Count);
}
}
}
}
}