#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.MOCMAEvolutionStrategy {
[Item("CrowdingIndicator", "Selection of Offspring based on CrowdingDistance")]
[StorableClass]
internal class CrowdingIndicator : Item, IIndicator {
#region Constructors and Cloning
[StorableConstructor]
protected CrowdingIndicator(bool deserializing) : base(deserializing) { }
protected CrowdingIndicator(CrowdingIndicator original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) { return new CrowdingIndicator(this, cloner); }
public CrowdingIndicator() { }
#endregion
public int LeastContributer(IReadOnlyList front, MultiObjectiveBasicProblem problem) {
var bounds = problem.Encoding.Bounds;
var extracted = front.Select(x => x.PenalizedFitness).ToArray();
if (extracted.Length <= 2) return 0;
var pointsums = new double[extracted.Length];
for (var dim = 0; dim < problem.Maximization.Length; dim++) {
var arr = extracted.Select(x => x[dim]).ToArray();
Array.Sort(arr);
var fmax = problem.Encoding.Bounds[dim % bounds.Rows, 1];
var fmin = bounds[dim % bounds.Rows, 0];
var pointIdx = 0;
foreach (var point in extracted) {
var pos = Array.BinarySearch(arr, point[dim]);
var d = pos != 0 && pos != arr.Length - 1 ? (arr[pos + 1] - arr[pos - 1]) / (fmax - fmin) : double.PositiveInfinity;
pointsums[pointIdx] += d;
pointIdx++;
}
}
return pointsums.Select((value, index) => new { value, index }).OrderBy(x => x.value).First().index;
}
}
}