#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Represents a k-Means clustering model.
///
[StorableClass]
[Item("KMeansClusteringModel", "Represents a k-Means clustering model.")]
public sealed class KMeansClusteringModel : DataAnalysisModel, IClusteringModel {
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
}
public override IEnumerable VariablesUsedForPrediction {
get { return allowedInputVariables; }
}
[Storable]
private string[] allowedInputVariables;
public IEnumerable AllowedInputVariables {
get { return allowedInputVariables; }
}
[Storable]
private List centers;
public IEnumerable Centers {
get {
return centers.Select(x => (double[])x.Clone());
}
}
[StorableConstructor]
private KMeansClusteringModel(bool deserializing) : base(deserializing) { }
private KMeansClusteringModel(KMeansClusteringModel original, Cloner cloner)
: base(original, cloner) {
this.allowedInputVariables = (string[])original.allowedInputVariables.Clone();
this.centers = new List(original.Centers);
}
public KMeansClusteringModel(double[,] centers, IEnumerable allowedInputVariables)
: base() {
this.name = ItemName;
this.description = ItemDescription;
// disect center matrix into list of double[]
// centers are given as double matrix where number of rows = dimensions and number of columns = clusters
// each column is a cluster center
this.centers = new List();
for (int i = 0; i < centers.GetLength(1); i++) {
double[] c = new double[centers.GetLength(0)];
for (int j = 0; j < c.Length; j++) {
c[j] = centers[j, i];
}
this.centers.Add(c);
}
this.allowedInputVariables = allowedInputVariables.ToArray();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new KMeansClusteringModel(this, cloner);
}
public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
return IsDatasetCompatible(problemData.Dataset, out errorMessage);
}
public IEnumerable GetClusterValues(IDataset dataset, IEnumerable rows) {
return KMeansClusteringUtil.FindClosestCenters(centers, dataset, allowedInputVariables, rows);
}
}
}