#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Threading;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// t-Distributed Stochastic Neighbor Embedding (tSNE) projects the data in a low dimensional
/// space to allow visual cluster identification.
///
[Item("t-Distributed Stochastic Neighbor Embedding (tSNE)", "t-Distributed Stochastic Neighbor Embedding projects the data in a low " +
"dimensional space to allow visual cluster identification. Implemented similar to: https://lvdmaaten.github.io/tsne/#implementations (Barnes-Hut t-SNE). Described in : https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf")]
[Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 100)]
[StorableClass]
public sealed class TSNEAlgorithm : BasicAlgorithm {
public override bool SupportsPause {
get { return true; }
}
public override Type ProblemType {
get { return typeof(IDataAnalysisProblem); }
}
public new IDataAnalysisProblem Problem {
get { return (IDataAnalysisProblem)base.Problem; }
set { base.Problem = value; }
}
#region Parameter names
private const string DistanceFunctionParameterName = "DistanceFunction";
private const string PerplexityParameterName = "Perplexity";
private const string ThetaParameterName = "Theta";
private const string NewDimensionsParameterName = "Dimensions";
private const string MaxIterationsParameterName = "MaxIterations";
private const string StopLyingIterationParameterName = "StopLyingIteration";
private const string MomentumSwitchIterationParameterName = "MomentumSwitchIteration";
private const string InitialMomentumParameterName = "InitialMomentum";
private const string FinalMomentumParameterName = "FinalMomentum";
private const string EtaParameterName = "Eta";
private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
private const string SeedParameterName = "Seed";
private const string ClassesNameParameterName = "ClassesName";
private const string NormalizationParameterName = "Normalization";
private const string RandomInitializationParameterName = "RandomInitialization";
private const string UpdateIntervalParameterName = "UpdateInterval";
#endregion
#region Result names
private const string IterationResultName = "Iteration";
private const string ErrorResultName = "Error";
private const string ErrorPlotResultName = "Error plot";
private const string ScatterPlotResultName = "Scatterplot";
private const string DataResultName = "Projected data";
#endregion
#region Parameter properties
public IFixedValueParameter PerplexityParameter {
get { return (IFixedValueParameter)Parameters[PerplexityParameterName]; }
}
public IFixedValueParameter ThetaParameter {
get { return (IFixedValueParameter)Parameters[ThetaParameterName]; }
}
public IFixedValueParameter NewDimensionsParameter {
get { return (IFixedValueParameter)Parameters[NewDimensionsParameterName]; }
}
public IConstrainedValueParameter> DistanceFunctionParameter {
get { return (IConstrainedValueParameter>)Parameters[DistanceFunctionParameterName]; }
}
public IFixedValueParameter MaxIterationsParameter {
get { return (IFixedValueParameter)Parameters[MaxIterationsParameterName]; }
}
public IFixedValueParameter StopLyingIterationParameter {
get { return (IFixedValueParameter)Parameters[StopLyingIterationParameterName]; }
}
public IFixedValueParameter MomentumSwitchIterationParameter {
get { return (IFixedValueParameter)Parameters[MomentumSwitchIterationParameterName]; }
}
public IFixedValueParameter InitialMomentumParameter {
get { return (IFixedValueParameter)Parameters[InitialMomentumParameterName]; }
}
public IFixedValueParameter FinalMomentumParameter {
get { return (IFixedValueParameter)Parameters[FinalMomentumParameterName]; }
}
public IFixedValueParameter EtaParameter {
get { return (IFixedValueParameter)Parameters[EtaParameterName]; }
}
public IFixedValueParameter SetSeedRandomlyParameter {
get { return (IFixedValueParameter)Parameters[SetSeedRandomlyParameterName]; }
}
public IFixedValueParameter SeedParameter {
get { return (IFixedValueParameter)Parameters[SeedParameterName]; }
}
public IConstrainedValueParameter ClassesNameParameter {
get { return (IConstrainedValueParameter)Parameters[ClassesNameParameterName]; }
}
public IFixedValueParameter NormalizationParameter {
get { return (IFixedValueParameter)Parameters[NormalizationParameterName]; }
}
public IFixedValueParameter RandomInitializationParameter {
get { return (IFixedValueParameter)Parameters[RandomInitializationParameterName]; }
}
public IFixedValueParameter UpdateIntervalParameter {
get { return (IFixedValueParameter)Parameters[UpdateIntervalParameterName]; }
}
#endregion
#region Properties
public IDistance DistanceFunction {
get { return DistanceFunctionParameter.Value; }
}
public double Perplexity {
get { return PerplexityParameter.Value.Value; }
set { PerplexityParameter.Value.Value = value; }
}
public double Theta {
get { return ThetaParameter.Value.Value; }
set { ThetaParameter.Value.Value = value; }
}
public int NewDimensions {
get { return NewDimensionsParameter.Value.Value; }
set { NewDimensionsParameter.Value.Value = value; }
}
public int MaxIterations {
get { return MaxIterationsParameter.Value.Value; }
set { MaxIterationsParameter.Value.Value = value; }
}
public int StopLyingIteration {
get { return StopLyingIterationParameter.Value.Value; }
set { StopLyingIterationParameter.Value.Value = value; }
}
public int MomentumSwitchIteration {
get { return MomentumSwitchIterationParameter.Value.Value; }
set { MomentumSwitchIterationParameter.Value.Value = value; }
}
public double InitialMomentum {
get { return InitialMomentumParameter.Value.Value; }
set { InitialMomentumParameter.Value.Value = value; }
}
public double FinalMomentum {
get { return FinalMomentumParameter.Value.Value; }
set { FinalMomentumParameter.Value.Value = value; }
}
public double Eta {
get { return EtaParameter.Value.Value; }
set { EtaParameter.Value.Value = value; }
}
public bool SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value.Value; }
set { SetSeedRandomlyParameter.Value.Value = value; }
}
public int Seed {
get { return SeedParameter.Value.Value; }
set { SeedParameter.Value.Value = value; }
}
public string ClassesName {
get { return ClassesNameParameter.Value != null ? ClassesNameParameter.Value.Value : null; }
set { ClassesNameParameter.Value.Value = value; }
}
public bool Normalization {
get { return NormalizationParameter.Value.Value; }
set { NormalizationParameter.Value.Value = value; }
}
public bool RandomInitialization {
get { return RandomInitializationParameter.Value.Value; }
set { RandomInitializationParameter.Value.Value = value; }
}
public int UpdateInterval {
get { return UpdateIntervalParameter.Value.Value; }
set { UpdateIntervalParameter.Value.Value = value; }
}
#endregion
#region Storable poperties
[Storable]
private Dictionary> dataRowIndices;
[Storable]
private TSNEStatic.TSNEState state;
#endregion
#region Constructors & Cloning
[StorableConstructor]
private TSNEAlgorithm(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(RandomInitializationParameterName))
Parameters.Add(new FixedValueParameter(RandomInitializationParameterName, "Wether data points should be randomly initialized or according to the first 2 dimensions", new BoolValue(true)));
RegisterParameterEvents();
}
private TSNEAlgorithm(TSNEAlgorithm original, Cloner cloner) : base(original, cloner) {
if (original.dataRowIndices != null)
dataRowIndices = new Dictionary>(original.dataRowIndices);
if (original.state != null)
state = cloner.Clone(original.state);
RegisterParameterEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new TSNEAlgorithm(this, cloner);
}
public TSNEAlgorithm() {
var distances = new ItemSet>(ApplicationManager.Manager.GetInstances>());
Parameters.Add(new ConstrainedValueParameter>(DistanceFunctionParameterName, "The distance function used to differentiate similar from non-similar points", distances, distances.OfType().FirstOrDefault()));
Parameters.Add(new FixedValueParameter(PerplexityParameterName, "Perplexity-parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower", new DoubleValue(25)));
Parameters.Add(new FixedValueParameter(ThetaParameterName, "Value describing how much appoximated " +
"gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. " +
"Appropriate values for theta are between 0.1 and 0.7 (default = 0.5). CAUTION: exact calculation of " +
"forces requires building a non-sparse N*N matrix where N is the number of data points. This may " +
"exceed memory limitations. The function is designed to run on large (N > 5000) data sets. It may give" +
" poor performance on very small data sets(it is better to use a standard t - SNE implementation on such data).", new PercentValue(0)));
Parameters.Add(new FixedValueParameter(NewDimensionsParameterName, "Dimensionality of projected space (usually 2 for easy visual analysis)", new IntValue(2)));
Parameters.Add(new FixedValueParameter(MaxIterationsParameterName, "Maximum number of iterations for gradient descent.", new IntValue(1000)));
Parameters.Add(new FixedValueParameter(StopLyingIterationParameterName, "Number of iterations after which p is no longer approximated.", new IntValue(0)));
Parameters.Add(new FixedValueParameter(MomentumSwitchIterationParameterName, "Number of iterations after which the momentum in the gradient descent is switched.", new IntValue(0)));
Parameters.Add(new FixedValueParameter(InitialMomentumParameterName, "The initial momentum in the gradient descent.", new DoubleValue(0.5)));
Parameters.Add(new FixedValueParameter(FinalMomentumParameterName, "The final momentum.", new DoubleValue(0.8)));
Parameters.Add(new FixedValueParameter(EtaParameterName, "Gradient descent learning rate.", new DoubleValue(10)));
Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "If the seed should be random.", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(SeedParameterName, "The seed used if it should not be random.", new IntValue(0)));
Parameters.Add(new OptionalConstrainedValueParameter(ClassesNameParameterName, "Name of the column specifying the class lables of each data point. If this is not set training/test is used as labels."));
Parameters.Add(new FixedValueParameter(NormalizationParameterName, "Whether the data should be zero centered and have variance of 1 for each variable, so different scalings are ignored.", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(UpdateIntervalParameterName, "The interval after which the results will be updated.", new IntValue(50)));
Parameters.Add(new FixedValueParameter(RandomInitializationParameterName, "Wether data points should be randomly initialized or according to the first 2 dimensions", new BoolValue(true)));
UpdateIntervalParameter.Hidden = true;
MomentumSwitchIterationParameter.Hidden = true;
InitialMomentumParameter.Hidden = true;
FinalMomentumParameter.Hidden = true;
StopLyingIterationParameter.Hidden = true;
EtaParameter.Hidden = false;
Problem = new RegressionProblem();
RegisterParameterEvents();
}
#endregion
public override void Prepare() {
base.Prepare();
dataRowIndices = null;
state = null;
}
protected override void Run(CancellationToken cancellationToken) {
var problemData = Problem.ProblemData;
// set up and initialize everything if necessary
var wdist = DistanceFunction as WeightedEuclideanDistance;
if (wdist != null) wdist.Initialize(problemData);
if (state == null) {
if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
var random = new MersenneTwister((uint)Seed);
var dataset = problemData.Dataset;
var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
var allindices = Problem.ProblemData.AllIndices.ToArray();
// jagged array is required to meet the static method declarations of TSNEStatic
var data = Enumerable.Range(0, dataset.Rows).Select(x => new double[allowedInputVariables.Length]).ToArray();
var col = 0;
foreach (var s in allowedInputVariables) {
var row = 0;
foreach (var d in dataset.GetDoubleValues(s)) {
data[row][col] = d;
row++;
}
col++;
}
if (Normalization) data = NormalizeInputData(data);
state = TSNEStatic.CreateState(data, DistanceFunction, random, NewDimensions, Perplexity, Theta, StopLyingIteration, MomentumSwitchIteration, InitialMomentum, FinalMomentum, Eta, RandomInitialization);
SetUpResults(allindices);
}
while (state.iter < MaxIterations && !cancellationToken.IsCancellationRequested) {
if (state.iter % UpdateInterval == 0) Analyze(state);
TSNEStatic.Iterate(state);
}
Analyze(state);
}
#region Events
protected override void OnProblemChanged() {
base.OnProblemChanged();
if (Problem == null) return;
OnProblemDataChanged(this, null);
}
protected override void RegisterProblemEvents() {
base.RegisterProblemEvents();
if (Problem == null) return;
Problem.ProblemDataChanged += OnProblemDataChanged;
if (Problem.ProblemData == null) return;
Problem.ProblemData.Changed += OnPerplexityChanged;
Problem.ProblemData.Changed += OnColumnsChanged;
if (Problem.ProblemData.Dataset == null) return;
Problem.ProblemData.Dataset.RowsChanged += OnPerplexityChanged;
Problem.ProblemData.Dataset.ColumnsChanged += OnColumnsChanged;
}
protected override void DeregisterProblemEvents() {
base.DeregisterProblemEvents();
if (Problem == null) return;
Problem.ProblemDataChanged -= OnProblemDataChanged;
if (Problem.ProblemData == null) return;
Problem.ProblemData.Changed -= OnPerplexityChanged;
Problem.ProblemData.Changed -= OnColumnsChanged;
if (Problem.ProblemData.Dataset == null) return;
Problem.ProblemData.Dataset.RowsChanged -= OnPerplexityChanged;
Problem.ProblemData.Dataset.ColumnsChanged -= OnColumnsChanged;
}
protected override void OnStopped() {
base.OnStopped();
//bwerth: state objects can be very large; avoid state serialization
state = null;
dataRowIndices = null;
}
private void OnProblemDataChanged(object sender, EventArgs args) {
if (Problem == null || Problem.ProblemData == null) return;
OnPerplexityChanged(this, null);
OnColumnsChanged(this, null);
Problem.ProblemData.Changed += OnPerplexityChanged;
Problem.ProblemData.Changed += OnColumnsChanged;
if (Problem.ProblemData.Dataset == null) return;
Problem.ProblemData.Dataset.RowsChanged += OnPerplexityChanged;
Problem.ProblemData.Dataset.ColumnsChanged += OnColumnsChanged;
if (!Parameters.ContainsKey(ClassesNameParameterName)) return;
ClassesNameParameter.ValidValues.Clear();
foreach (var input in Problem.ProblemData.InputVariables) ClassesNameParameter.ValidValues.Add(input);
}
private void OnColumnsChanged(object sender, EventArgs e) {
if (Problem == null || Problem.ProblemData == null || Problem.ProblemData.Dataset == null || !Parameters.ContainsKey(DistanceFunctionParameterName)) return;
DistanceFunctionParameter.ValidValues.OfType().Single().AdaptToProblemData(Problem.ProblemData);
}
private void RegisterParameterEvents() {
PerplexityParameter.Value.ValueChanged += OnPerplexityChanged;
}
private void OnPerplexityChanged(object sender, EventArgs e) {
if (Problem == null || Problem.ProblemData == null || Problem.ProblemData.Dataset == null || !Parameters.ContainsKey(PerplexityParameterName)) return;
PerplexityParameter.Value.Value = Math.Max(1, Math.Min((Problem.ProblemData.Dataset.Rows - 1) / 3.0, Perplexity));
}
#endregion
#region Helpers
private void SetUpResults(IReadOnlyList allIndices) {
if (Results == null) return;
var results = Results;
dataRowIndices = new Dictionary>();
var problemData = Problem.ProblemData;
if (!results.ContainsKey(IterationResultName)) results.Add(new Result(IterationResultName, new IntValue(0)));
if (!results.ContainsKey(ErrorResultName)) results.Add(new Result(ErrorResultName, new DoubleValue(0)));
if (!results.ContainsKey(ScatterPlotResultName)) results.Add(new Result(ScatterPlotResultName, "Plot of the projected data", new ScatterPlot(DataResultName, "")));
if (!results.ContainsKey(DataResultName)) results.Add(new Result(DataResultName, "Projected Data", new DoubleMatrix()));
if (!results.ContainsKey(ErrorPlotResultName)) {
var errortable = new DataTable(ErrorPlotResultName, "Development of errors during gradient descent") {
VisualProperties = {
XAxisTitle = "UpdateIntervall",
YAxisTitle = "Error",
YAxisLogScale = true
}
};
errortable.Rows.Add(new DataRow("Errors"));
errortable.Rows["Errors"].VisualProperties.StartIndexZero = true;
results.Add(new Result(ErrorPlotResultName, errortable));
}
//color datapoints acording to classes variable (be it double, datetime or string)
if (!problemData.Dataset.VariableNames.Contains(ClassesName)) {
dataRowIndices.Add("Training", problemData.TrainingIndices.ToList());
dataRowIndices.Add("Test", problemData.TestIndices.ToList());
return;
}
var classificationData = problemData as ClassificationProblemData;
if (classificationData != null && classificationData.TargetVariable.Equals(ClassesName)) {
var classNames = classificationData.ClassValues.Zip(classificationData.ClassNames, (v, n) => new {v, n}).ToDictionary(x => x.v, x => x.n);
var classes = classificationData.Dataset.GetDoubleValues(classificationData.TargetVariable, allIndices).Select(v => classNames[v]).ToArray();
for (var i = 0; i < classes.Length; i++) {
if (!dataRowIndices.ContainsKey(classes[i])) dataRowIndices.Add(classes[i], new List());
dataRowIndices[classes[i]].Add(i);
}
} else if (((Dataset)problemData.Dataset).VariableHasType(ClassesName)) {
var classes = problemData.Dataset.GetStringValues(ClassesName, allIndices).ToArray();
for (var i = 0; i < classes.Length; i++) {
if (!dataRowIndices.ContainsKey(classes[i])) dataRowIndices.Add(classes[i], new List());
dataRowIndices[classes[i]].Add(i);
}
} else if (((Dataset)problemData.Dataset).VariableHasType(ClassesName)) {
var clusterdata = new Dataset(problemData.Dataset.DoubleVariables, problemData.Dataset.DoubleVariables.Select(v => problemData.Dataset.GetDoubleValues(v, allIndices).ToList()));
const int contours = 8;
Dictionary contourMap;
IClusteringModel clusterModel;
double[][] borders;
CreateClusters(clusterdata, ClassesName, contours, out clusterModel, out contourMap, out borders);
var contourorder = borders.Select((x, i) => new {x, i}).OrderBy(x => x.x[0]).Select(x => x.i).ToArray();
for (var i = 0; i < contours; i++) {
var c = contourorder[i];
var contourname = contourMap[c];
dataRowIndices.Add(contourname, new List());
var row = new ScatterPlotDataRow(contourname, "", new List>()) {VisualProperties = {Color = GetHeatMapColor(i, contours), PointSize = 8}};
((ScatterPlot)results[ScatterPlotResultName].Value).Rows.Add(row);
}
var allClusters = clusterModel.GetClusterValues(clusterdata, Enumerable.Range(0, clusterdata.Rows)).ToArray();
for (var i = 0; i < clusterdata.Rows; i++) dataRowIndices[contourMap[allClusters[i] - 1]].Add(i);
} else if (((Dataset)problemData.Dataset).VariableHasType(ClassesName)) {
var clusterdata = new Dataset(problemData.Dataset.DateTimeVariables, problemData.Dataset.DateTimeVariables.Select(v => problemData.Dataset.GetDoubleValues(v, allIndices).ToList()));
const int contours = 8;
Dictionary contourMap;
IClusteringModel clusterModel;
double[][] borders;
CreateClusters(clusterdata, ClassesName, contours, out clusterModel, out contourMap, out borders);
var contourorder = borders.Select((x, i) => new {x, i}).OrderBy(x => x.x[0]).Select(x => x.i).ToArray();
for (var i = 0; i < contours; i++) {
var c = contourorder[i];
var contourname = contourMap[c];
dataRowIndices.Add(contourname, new List());
var row = new ScatterPlotDataRow(contourname, "", new List>()) {VisualProperties = {Color = GetHeatMapColor(i, contours), PointSize = 8}};
row.VisualProperties.PointSize = 8;
((ScatterPlot)results[ScatterPlotResultName].Value).Rows.Add(row);
}
var allClusters = clusterModel.GetClusterValues(clusterdata, Enumerable.Range(0, clusterdata.Rows)).ToArray();
for (var i = 0; i < clusterdata.Rows; i++) dataRowIndices[contourMap[allClusters[i] - 1]].Add(i);
} else {
dataRowIndices.Add("Training", problemData.TrainingIndices.ToList());
dataRowIndices.Add("Test", problemData.TestIndices.ToList());
}
}
private void Analyze(TSNEStatic.TSNEState tsneState) {
if (Results == null) return;
var results = Results;
var plot = results[ErrorPlotResultName].Value as DataTable;
if (plot == null) throw new ArgumentException("Could not create/access error data table in results collection.");
var errors = plot.Rows["Errors"].Values;
var c = tsneState.EvaluateError();
errors.Add(c);
((IntValue)results[IterationResultName].Value).Value = tsneState.iter;
((DoubleValue)results[ErrorResultName].Value).Value = errors.Last();
var ndata = NormalizeProjectedData(tsneState.newData);
results[DataResultName].Value = new DoubleMatrix(ndata);
var splot = results[ScatterPlotResultName].Value as ScatterPlot;
FillScatterPlot(ndata, splot, dataRowIndices);
}
private static void FillScatterPlot(double[,] lowDimData, ScatterPlot plot, Dictionary> dataRowIndices) {
foreach (var rowName in dataRowIndices.Keys) {
if (!plot.Rows.ContainsKey(rowName)) {
plot.Rows.Add(new ScatterPlotDataRow(rowName, "", new List>()));
plot.Rows[rowName].VisualProperties.PointSize = 8;
}
plot.Rows[rowName].Points.Replace(dataRowIndices[rowName].Select(i => new Point2D(lowDimData[i, 0], lowDimData[i, 1])));
}
}
private static double[,] NormalizeProjectedData(double[,] data) {
var max = new double[data.GetLength(1)];
var min = new double[data.GetLength(1)];
var res = new double[data.GetLength(0), data.GetLength(1)];
for (var i = 0; i < max.Length; i++) max[i] = min[i] = data[0, i];
for (var i = 0; i < data.GetLength(0); i++)
for (var j = 0; j < data.GetLength(1); j++) {
var v = data[i, j];
max[j] = Math.Max(max[j], v);
min[j] = Math.Min(min[j], v);
}
for (var i = 0; i < data.GetLength(0); i++) {
for (var j = 0; j < data.GetLength(1); j++) {
var d = max[j] - min[j];
var s = data[i, j] - (max[j] + min[j]) / 2; //shift data
if (d.IsAlmost(0)) res[i, j] = data[i, j]; //no scaling possible
else res[i, j] = s / d; //scale data
}
}
return res;
}
private static double[][] NormalizeInputData(IReadOnlyList> data) {
// as in tSNE implementation by van der Maaten
var n = data[0].Count;
var mean = new double[n];
var max = new double[n];
var nData = new double[data.Count][];
for (var i = 0; i < n; i++) {
mean[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i]).Average();
max[i] = Enumerable.Range(0, data.Count).Max(x => Math.Abs(data[x][i]));
}
for (var i = 0; i < data.Count; i++) {
nData[i] = new double[n];
for (var j = 0; j < n; j++)
nData[i][j] = max[j].IsAlmost(0) ? data[i][j] - mean[j] : (data[i][j] - mean[j]) / max[j];
}
return nData;
}
private static Color GetHeatMapColor(int contourNr, int noContours) {
return ConvertTotalToRgb(0, noContours, contourNr);
}
private static void CreateClusters(IDataset data, string target, int contours, out IClusteringModel contourCluster, out Dictionary contourNames, out double[][] borders) {
var cpd = new ClusteringProblemData((Dataset)data, new[] {target});
contourCluster = KMeansClustering.CreateKMeansSolution(cpd, contours, 3).Model;
borders = Enumerable.Range(0, contours).Select(x => new[] {double.MaxValue, double.MinValue}).ToArray();
var clusters = contourCluster.GetClusterValues(cpd.Dataset, cpd.AllIndices).ToArray();
var targetvalues = cpd.Dataset.GetDoubleValues(target).ToArray();
foreach (var i in cpd.AllIndices) {
var cl = clusters[i] - 1;
var clv = targetvalues[i];
if (borders[cl][0] > clv) borders[cl][0] = clv;
if (borders[cl][1] < clv) borders[cl][1] = clv;
}
contourNames = new Dictionary();
for (var i = 0; i < contours; i++)
contourNames.Add(i, "[" + borders[i][0] + ";" + borders[i][1] + "]");
}
private static Color ConvertTotalToRgb(double low, double high, double cell) {
var colorGradient = ColorGradient.Colors;
var range = high - low;
var h = Math.Min(cell / range * colorGradient.Count, colorGradient.Count - 1);
return colorGradient[(int)h];
}
#endregion
}
}