#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Threading; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// t-Distributed Stochastic Neighbor Embedding (tSNE) projects the data in a low dimensional /// space to allow visual cluster identification. /// [Item("t-Distributed Stochastic Neighbor Embedding (tSNE)", "t-Distributed Stochastic Neighbor Embedding projects the data in a low " + "dimensional space to allow visual cluster identification. Implemented similar to: https://lvdmaaten.github.io/tsne/#implementations (Barnes-Hut t-SNE). Described in : https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf")] [Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 100)] [StorableClass] public sealed class TSNEAlgorithm : BasicAlgorithm { public override bool SupportsPause { get { return true; } } public override Type ProblemType { get { return typeof(IDataAnalysisProblem); } } public new IDataAnalysisProblem Problem { get { return (IDataAnalysisProblem)base.Problem; } set { base.Problem = value; } } #region Parameter names private const string DistanceFunctionParameterName = "DistanceFunction"; private const string PerplexityParameterName = "Perplexity"; private const string ThetaParameterName = "Theta"; private const string NewDimensionsParameterName = "Dimensions"; private const string MaxIterationsParameterName = "MaxIterations"; private const string StopLyingIterationParameterName = "StopLyingIteration"; private const string MomentumSwitchIterationParameterName = "MomentumSwitchIteration"; private const string InitialMomentumParameterName = "InitialMomentum"; private const string FinalMomentumParameterName = "FinalMomentum"; private const string EtaParameterName = "Eta"; private const string SetSeedRandomlyParameterName = "SetSeedRandomly"; private const string SeedParameterName = "Seed"; private const string ClassesNameParameterName = "ClassesName"; private const string NormalizationParameterName = "Normalization"; private const string RandomInitializationParameterName = "RandomInitialization"; private const string UpdateIntervalParameterName = "UpdateInterval"; #endregion #region Result names private const string IterationResultName = "Iteration"; private const string ErrorResultName = "Error"; private const string ErrorPlotResultName = "Error plot"; private const string ScatterPlotResultName = "Scatterplot"; private const string DataResultName = "Projected data"; #endregion #region Parameter properties public IFixedValueParameter PerplexityParameter { get { return (IFixedValueParameter)Parameters[PerplexityParameterName]; } } public IFixedValueParameter ThetaParameter { get { return (IFixedValueParameter)Parameters[ThetaParameterName]; } } public IFixedValueParameter NewDimensionsParameter { get { return (IFixedValueParameter)Parameters[NewDimensionsParameterName]; } } public IConstrainedValueParameter> DistanceFunctionParameter { get { return (IConstrainedValueParameter>)Parameters[DistanceFunctionParameterName]; } } public IFixedValueParameter MaxIterationsParameter { get { return (IFixedValueParameter)Parameters[MaxIterationsParameterName]; } } public IFixedValueParameter StopLyingIterationParameter { get { return (IFixedValueParameter)Parameters[StopLyingIterationParameterName]; } } public IFixedValueParameter MomentumSwitchIterationParameter { get { return (IFixedValueParameter)Parameters[MomentumSwitchIterationParameterName]; } } public IFixedValueParameter InitialMomentumParameter { get { return (IFixedValueParameter)Parameters[InitialMomentumParameterName]; } } public IFixedValueParameter FinalMomentumParameter { get { return (IFixedValueParameter)Parameters[FinalMomentumParameterName]; } } public IFixedValueParameter EtaParameter { get { return (IFixedValueParameter)Parameters[EtaParameterName]; } } public IFixedValueParameter SetSeedRandomlyParameter { get { return (IFixedValueParameter)Parameters[SetSeedRandomlyParameterName]; } } public IFixedValueParameter SeedParameter { get { return (IFixedValueParameter)Parameters[SeedParameterName]; } } public IConstrainedValueParameter ClassesNameParameter { get { return (IConstrainedValueParameter)Parameters[ClassesNameParameterName]; } } public IFixedValueParameter NormalizationParameter { get { return (IFixedValueParameter)Parameters[NormalizationParameterName]; } } public IFixedValueParameter RandomInitializationParameter { get { return (IFixedValueParameter)Parameters[RandomInitializationParameterName]; } } public IFixedValueParameter UpdateIntervalParameter { get { return (IFixedValueParameter)Parameters[UpdateIntervalParameterName]; } } #endregion #region Properties public IDistance DistanceFunction { get { return DistanceFunctionParameter.Value; } } public double Perplexity { get { return PerplexityParameter.Value.Value; } set { PerplexityParameter.Value.Value = value; } } public double Theta { get { return ThetaParameter.Value.Value; } set { ThetaParameter.Value.Value = value; } } public int NewDimensions { get { return NewDimensionsParameter.Value.Value; } set { NewDimensionsParameter.Value.Value = value; } } public int MaxIterations { get { return MaxIterationsParameter.Value.Value; } set { MaxIterationsParameter.Value.Value = value; } } public int StopLyingIteration { get { return StopLyingIterationParameter.Value.Value; } set { StopLyingIterationParameter.Value.Value = value; } } public int MomentumSwitchIteration { get { return MomentumSwitchIterationParameter.Value.Value; } set { MomentumSwitchIterationParameter.Value.Value = value; } } public double InitialMomentum { get { return InitialMomentumParameter.Value.Value; } set { InitialMomentumParameter.Value.Value = value; } } public double FinalMomentum { get { return FinalMomentumParameter.Value.Value; } set { FinalMomentumParameter.Value.Value = value; } } public double Eta { get { return EtaParameter.Value.Value; } set { EtaParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } } public int Seed { get { return SeedParameter.Value.Value; } set { SeedParameter.Value.Value = value; } } public string ClassesName { get { return ClassesNameParameter.Value != null ? ClassesNameParameter.Value.Value : null; } set { ClassesNameParameter.Value.Value = value; } } public bool Normalization { get { return NormalizationParameter.Value.Value; } set { NormalizationParameter.Value.Value = value; } } public bool RandomInitialization { get { return RandomInitializationParameter.Value.Value; } set { RandomInitializationParameter.Value.Value = value; } } public int UpdateInterval { get { return UpdateIntervalParameter.Value.Value; } set { UpdateIntervalParameter.Value.Value = value; } } #endregion #region Storable poperties [Storable] private Dictionary> dataRowIndices; [Storable] private TSNEStatic.TSNEState state; #endregion #region Constructors & Cloning [StorableConstructor] private TSNEAlgorithm(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(RandomInitializationParameterName)) Parameters.Add(new FixedValueParameter(RandomInitializationParameterName, "Wether data points should be randomly initialized or according to the first 2 dimensions", new BoolValue(true))); RegisterParameterEvents(); } private TSNEAlgorithm(TSNEAlgorithm original, Cloner cloner) : base(original, cloner) { if (original.dataRowIndices != null) dataRowIndices = new Dictionary>(original.dataRowIndices); if (original.state != null) state = cloner.Clone(original.state); RegisterParameterEvents(); } public override IDeepCloneable Clone(Cloner cloner) { return new TSNEAlgorithm(this, cloner); } public TSNEAlgorithm() { var distances = new ItemSet>(ApplicationManager.Manager.GetInstances>()); Parameters.Add(new ConstrainedValueParameter>(DistanceFunctionParameterName, "The distance function used to differentiate similar from non-similar points", distances, distances.OfType().FirstOrDefault())); Parameters.Add(new FixedValueParameter(PerplexityParameterName, "Perplexity-parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower", new DoubleValue(25))); Parameters.Add(new FixedValueParameter(ThetaParameterName, "Value describing how much appoximated " + "gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. " + "Appropriate values for theta are between 0.1 and 0.7 (default = 0.5). CAUTION: exact calculation of " + "forces requires building a non-sparse N*N matrix where N is the number of data points. This may " + "exceed memory limitations. The function is designed to run on large (N > 5000) data sets. It may give" + " poor performance on very small data sets(it is better to use a standard t - SNE implementation on such data).", new PercentValue(0))); Parameters.Add(new FixedValueParameter(NewDimensionsParameterName, "Dimensionality of projected space (usually 2 for easy visual analysis)", new IntValue(2))); Parameters.Add(new FixedValueParameter(MaxIterationsParameterName, "Maximum number of iterations for gradient descent.", new IntValue(1000))); Parameters.Add(new FixedValueParameter(StopLyingIterationParameterName, "Number of iterations after which p is no longer approximated.", new IntValue(0))); Parameters.Add(new FixedValueParameter(MomentumSwitchIterationParameterName, "Number of iterations after which the momentum in the gradient descent is switched.", new IntValue(0))); Parameters.Add(new FixedValueParameter(InitialMomentumParameterName, "The initial momentum in the gradient descent.", new DoubleValue(0.5))); Parameters.Add(new FixedValueParameter(FinalMomentumParameterName, "The final momentum.", new DoubleValue(0.8))); Parameters.Add(new FixedValueParameter(EtaParameterName, "Gradient descent learning rate.", new DoubleValue(10))); Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "If the seed should be random.", new BoolValue(true))); Parameters.Add(new FixedValueParameter(SeedParameterName, "The seed used if it should not be random.", new IntValue(0))); Parameters.Add(new OptionalConstrainedValueParameter(ClassesNameParameterName, "Name of the column specifying the class lables of each data point. If this is not set training/test is used as labels.")); Parameters.Add(new FixedValueParameter(NormalizationParameterName, "Whether the data should be zero centered and have variance of 1 for each variable, so different scalings are ignored.", new BoolValue(true))); Parameters.Add(new FixedValueParameter(UpdateIntervalParameterName, "The interval after which the results will be updated.", new IntValue(50))); Parameters.Add(new FixedValueParameter(RandomInitializationParameterName, "Wether data points should be randomly initialized or according to the first 2 dimensions", new BoolValue(true))); UpdateIntervalParameter.Hidden = true; MomentumSwitchIterationParameter.Hidden = true; InitialMomentumParameter.Hidden = true; FinalMomentumParameter.Hidden = true; StopLyingIterationParameter.Hidden = true; EtaParameter.Hidden = false; Problem = new RegressionProblem(); RegisterParameterEvents(); } #endregion public override void Prepare() { base.Prepare(); dataRowIndices = null; state = null; } protected override void Run(CancellationToken cancellationToken) { var problemData = Problem.ProblemData; // set up and initialize everything if necessary var wdist = DistanceFunction as WeightedEuclideanDistance; if (wdist != null) wdist.Initialize(problemData); if (state == null) { if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed(); var random = new MersenneTwister((uint)Seed); var dataset = problemData.Dataset; var allowedInputVariables = problemData.AllowedInputVariables.ToArray(); var allindices = Problem.ProblemData.AllIndices.ToArray(); // jagged array is required to meet the static method declarations of TSNEStatic var data = Enumerable.Range(0, dataset.Rows).Select(x => new double[allowedInputVariables.Length]).ToArray(); var col = 0; foreach (var s in allowedInputVariables) { var row = 0; foreach (var d in dataset.GetDoubleValues(s)) { data[row][col] = d; row++; } col++; } if (Normalization) data = NormalizeInputData(data); state = TSNEStatic.CreateState(data, DistanceFunction, random, NewDimensions, Perplexity, Theta, StopLyingIteration, MomentumSwitchIteration, InitialMomentum, FinalMomentum, Eta, RandomInitialization); SetUpResults(allindices); } while (state.iter < MaxIterations && !cancellationToken.IsCancellationRequested) { if (state.iter % UpdateInterval == 0) Analyze(state); TSNEStatic.Iterate(state); } Analyze(state); } #region Events protected override void OnProblemChanged() { base.OnProblemChanged(); if (Problem == null) return; OnProblemDataChanged(this, null); } protected override void RegisterProblemEvents() { base.RegisterProblemEvents(); if (Problem == null) return; Problem.ProblemDataChanged += OnProblemDataChanged; if (Problem.ProblemData == null) return; Problem.ProblemData.Changed += OnPerplexityChanged; Problem.ProblemData.Changed += OnColumnsChanged; if (Problem.ProblemData.Dataset == null) return; Problem.ProblemData.Dataset.RowsChanged += OnPerplexityChanged; Problem.ProblemData.Dataset.ColumnsChanged += OnColumnsChanged; } protected override void DeregisterProblemEvents() { base.DeregisterProblemEvents(); if (Problem == null) return; Problem.ProblemDataChanged -= OnProblemDataChanged; if (Problem.ProblemData == null) return; Problem.ProblemData.Changed -= OnPerplexityChanged; Problem.ProblemData.Changed -= OnColumnsChanged; if (Problem.ProblemData.Dataset == null) return; Problem.ProblemData.Dataset.RowsChanged -= OnPerplexityChanged; Problem.ProblemData.Dataset.ColumnsChanged -= OnColumnsChanged; } protected override void OnStopped() { base.OnStopped(); //bwerth: state objects can be very large; avoid state serialization state = null; dataRowIndices = null; } private void OnProblemDataChanged(object sender, EventArgs args) { if (Problem == null || Problem.ProblemData == null) return; OnPerplexityChanged(this, null); OnColumnsChanged(this, null); Problem.ProblemData.Changed += OnPerplexityChanged; Problem.ProblemData.Changed += OnColumnsChanged; if (Problem.ProblemData.Dataset == null) return; Problem.ProblemData.Dataset.RowsChanged += OnPerplexityChanged; Problem.ProblemData.Dataset.ColumnsChanged += OnColumnsChanged; if (!Parameters.ContainsKey(ClassesNameParameterName)) return; ClassesNameParameter.ValidValues.Clear(); foreach (var input in Problem.ProblemData.InputVariables) ClassesNameParameter.ValidValues.Add(input); } private void OnColumnsChanged(object sender, EventArgs e) { if (Problem == null || Problem.ProblemData == null || Problem.ProblemData.Dataset == null || !Parameters.ContainsKey(DistanceFunctionParameterName)) return; DistanceFunctionParameter.ValidValues.OfType().Single().AdaptToProblemData(Problem.ProblemData); } private void RegisterParameterEvents() { PerplexityParameter.Value.ValueChanged += OnPerplexityChanged; } private void OnPerplexityChanged(object sender, EventArgs e) { if (Problem == null || Problem.ProblemData == null || Problem.ProblemData.Dataset == null || !Parameters.ContainsKey(PerplexityParameterName)) return; PerplexityParameter.Value.Value = Math.Max(1, Math.Min((Problem.ProblemData.Dataset.Rows - 1) / 3.0, Perplexity)); } #endregion #region Helpers private void SetUpResults(IReadOnlyList allIndices) { if (Results == null) return; var results = Results; dataRowIndices = new Dictionary>(); var problemData = Problem.ProblemData; if (!results.ContainsKey(IterationResultName)) results.Add(new Result(IterationResultName, new IntValue(0))); if (!results.ContainsKey(ErrorResultName)) results.Add(new Result(ErrorResultName, new DoubleValue(0))); if (!results.ContainsKey(ScatterPlotResultName)) results.Add(new Result(ScatterPlotResultName, "Plot of the projected data", new ScatterPlot(DataResultName, ""))); if (!results.ContainsKey(DataResultName)) results.Add(new Result(DataResultName, "Projected Data", new DoubleMatrix())); if (!results.ContainsKey(ErrorPlotResultName)) { var errortable = new DataTable(ErrorPlotResultName, "Development of errors during gradient descent") { VisualProperties = { XAxisTitle = "UpdateIntervall", YAxisTitle = "Error", YAxisLogScale = true } }; errortable.Rows.Add(new DataRow("Errors")); errortable.Rows["Errors"].VisualProperties.StartIndexZero = true; results.Add(new Result(ErrorPlotResultName, errortable)); } //color datapoints acording to classes variable (be it double, datetime or string) if (!problemData.Dataset.VariableNames.Contains(ClassesName)) { dataRowIndices.Add("Training", problemData.TrainingIndices.ToList()); dataRowIndices.Add("Test", problemData.TestIndices.ToList()); return; } var classificationData = problemData as ClassificationProblemData; if (classificationData != null && classificationData.TargetVariable.Equals(ClassesName)) { var classNames = classificationData.ClassValues.Zip(classificationData.ClassNames, (v, n) => new {v, n}).ToDictionary(x => x.v, x => x.n); var classes = classificationData.Dataset.GetDoubleValues(classificationData.TargetVariable, allIndices).Select(v => classNames[v]).ToArray(); for (var i = 0; i < classes.Length; i++) { if (!dataRowIndices.ContainsKey(classes[i])) dataRowIndices.Add(classes[i], new List()); dataRowIndices[classes[i]].Add(i); } } else if (((Dataset)problemData.Dataset).VariableHasType(ClassesName)) { var classes = problemData.Dataset.GetStringValues(ClassesName, allIndices).ToArray(); for (var i = 0; i < classes.Length; i++) { if (!dataRowIndices.ContainsKey(classes[i])) dataRowIndices.Add(classes[i], new List()); dataRowIndices[classes[i]].Add(i); } } else if (((Dataset)problemData.Dataset).VariableHasType(ClassesName)) { var clusterdata = new Dataset(problemData.Dataset.DoubleVariables, problemData.Dataset.DoubleVariables.Select(v => problemData.Dataset.GetDoubleValues(v, allIndices).ToList())); const int contours = 8; Dictionary contourMap; IClusteringModel clusterModel; double[][] borders; CreateClusters(clusterdata, ClassesName, contours, out clusterModel, out contourMap, out borders); var contourorder = borders.Select((x, i) => new {x, i}).OrderBy(x => x.x[0]).Select(x => x.i).ToArray(); for (var i = 0; i < contours; i++) { var c = contourorder[i]; var contourname = contourMap[c]; dataRowIndices.Add(contourname, new List()); var row = new ScatterPlotDataRow(contourname, "", new List>()) {VisualProperties = {Color = GetHeatMapColor(i, contours), PointSize = 8}}; ((ScatterPlot)results[ScatterPlotResultName].Value).Rows.Add(row); } var allClusters = clusterModel.GetClusterValues(clusterdata, Enumerable.Range(0, clusterdata.Rows)).ToArray(); for (var i = 0; i < clusterdata.Rows; i++) dataRowIndices[contourMap[allClusters[i] - 1]].Add(i); } else if (((Dataset)problemData.Dataset).VariableHasType(ClassesName)) { var clusterdata = new Dataset(problemData.Dataset.DateTimeVariables, problemData.Dataset.DateTimeVariables.Select(v => problemData.Dataset.GetDoubleValues(v, allIndices).ToList())); const int contours = 8; Dictionary contourMap; IClusteringModel clusterModel; double[][] borders; CreateClusters(clusterdata, ClassesName, contours, out clusterModel, out contourMap, out borders); var contourorder = borders.Select((x, i) => new {x, i}).OrderBy(x => x.x[0]).Select(x => x.i).ToArray(); for (var i = 0; i < contours; i++) { var c = contourorder[i]; var contourname = contourMap[c]; dataRowIndices.Add(contourname, new List()); var row = new ScatterPlotDataRow(contourname, "", new List>()) {VisualProperties = {Color = GetHeatMapColor(i, contours), PointSize = 8}}; row.VisualProperties.PointSize = 8; ((ScatterPlot)results[ScatterPlotResultName].Value).Rows.Add(row); } var allClusters = clusterModel.GetClusterValues(clusterdata, Enumerable.Range(0, clusterdata.Rows)).ToArray(); for (var i = 0; i < clusterdata.Rows; i++) dataRowIndices[contourMap[allClusters[i] - 1]].Add(i); } else { dataRowIndices.Add("Training", problemData.TrainingIndices.ToList()); dataRowIndices.Add("Test", problemData.TestIndices.ToList()); } } private void Analyze(TSNEStatic.TSNEState tsneState) { if (Results == null) return; var results = Results; var plot = results[ErrorPlotResultName].Value as DataTable; if (plot == null) throw new ArgumentException("Could not create/access error data table in results collection."); var errors = plot.Rows["Errors"].Values; var c = tsneState.EvaluateError(); errors.Add(c); ((IntValue)results[IterationResultName].Value).Value = tsneState.iter; ((DoubleValue)results[ErrorResultName].Value).Value = errors.Last(); var ndata = NormalizeProjectedData(tsneState.newData); results[DataResultName].Value = new DoubleMatrix(ndata); var splot = results[ScatterPlotResultName].Value as ScatterPlot; FillScatterPlot(ndata, splot, dataRowIndices); } private static void FillScatterPlot(double[,] lowDimData, ScatterPlot plot, Dictionary> dataRowIndices) { foreach (var rowName in dataRowIndices.Keys) { if (!plot.Rows.ContainsKey(rowName)) { plot.Rows.Add(new ScatterPlotDataRow(rowName, "", new List>())); plot.Rows[rowName].VisualProperties.PointSize = 8; } plot.Rows[rowName].Points.Replace(dataRowIndices[rowName].Select(i => new Point2D(lowDimData[i, 0], lowDimData[i, 1]))); } } private static double[,] NormalizeProjectedData(double[,] data) { var max = new double[data.GetLength(1)]; var min = new double[data.GetLength(1)]; var res = new double[data.GetLength(0), data.GetLength(1)]; for (var i = 0; i < max.Length; i++) max[i] = min[i] = data[0, i]; for (var i = 0; i < data.GetLength(0); i++) for (var j = 0; j < data.GetLength(1); j++) { var v = data[i, j]; max[j] = Math.Max(max[j], v); min[j] = Math.Min(min[j], v); } for (var i = 0; i < data.GetLength(0); i++) { for (var j = 0; j < data.GetLength(1); j++) { var d = max[j] - min[j]; var s = data[i, j] - (max[j] + min[j]) / 2; //shift data if (d.IsAlmost(0)) res[i, j] = data[i, j]; //no scaling possible else res[i, j] = s / d; //scale data } } return res; } private static double[][] NormalizeInputData(IReadOnlyList> data) { // as in tSNE implementation by van der Maaten var n = data[0].Count; var mean = new double[n]; var max = new double[n]; var nData = new double[data.Count][]; for (var i = 0; i < n; i++) { mean[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i]).Average(); max[i] = Enumerable.Range(0, data.Count).Max(x => Math.Abs(data[x][i])); } for (var i = 0; i < data.Count; i++) { nData[i] = new double[n]; for (var j = 0; j < n; j++) nData[i][j] = max[j].IsAlmost(0) ? data[i][j] - mean[j] : (data[i][j] - mean[j]) / max[j]; } return nData; } private static Color GetHeatMapColor(int contourNr, int noContours) { return ConvertTotalToRgb(0, noContours, contourNr); } private static void CreateClusters(IDataset data, string target, int contours, out IClusteringModel contourCluster, out Dictionary contourNames, out double[][] borders) { var cpd = new ClusteringProblemData((Dataset)data, new[] {target}); contourCluster = KMeansClustering.CreateKMeansSolution(cpd, contours, 3).Model; borders = Enumerable.Range(0, contours).Select(x => new[] {double.MaxValue, double.MinValue}).ToArray(); var clusters = contourCluster.GetClusterValues(cpd.Dataset, cpd.AllIndices).ToArray(); var targetvalues = cpd.Dataset.GetDoubleValues(target).ToArray(); foreach (var i in cpd.AllIndices) { var cl = clusters[i] - 1; var clv = targetvalues[i]; if (borders[cl][0] > clv) borders[cl][0] = clv; if (borders[cl][1] < clv) borders[cl][1] = clv; } contourNames = new Dictionary(); for (var i = 0; i < contours; i++) contourNames.Add(i, "[" + borders[i][0] + ";" + borders[i][1] + "]"); } private static Color ConvertTotalToRgb(double low, double high, double cell) { var colorGradient = ColorGradient.Colors; var range = high - low; var h = Math.Min(cell / range * colorGradient.Count, colorGradient.Count - 1); return colorGradient[(int)h]; } #endregion } }