#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HEAL.Attic;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Linear regression data analysis algorithm.
///
[Item("Linear Regression (LR)", "Linear regression data analysis algorithm (wrapper for ALGLIB).")]
[Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)]
[StorableType("CF99D45E-F341-445E-9B9E-0587A8D9CBA7")]
public sealed class LinearRegression : FixedDataAnalysisAlgorithm {
private const string SolutionResultName = "Linear regression solution";
private const string ConfidenceSolutionResultName = "Solution with prediction intervals";
[StorableConstructor]
private LinearRegression(StorableConstructorFlag _) : base(_) { }
private LinearRegression(LinearRegression original, Cloner cloner)
: base(original, cloner) {
}
public LinearRegression()
: base() {
Problem = new RegressionProblem();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearRegression(this, cloner);
}
#region linear regression
protected override void Run(CancellationToken cancellationToken) {
double rmsError, cvRmsError;
// produce both solutions, to allow symbolic manipulation of LR solutions as well
// as the calculation of prediction intervals.
// There is no clean way to implement the new model class for LR as a symbolic model.
var solution = CreateSolution(Problem.ProblemData, out rmsError, out cvRmsError);
#pragma warning disable 168, 3021
var symbolicSolution = CreateLinearRegressionSolution(Problem.ProblemData, out rmsError, out cvRmsError);
#pragma warning restore 168, 3021
Results.Add(new Result(SolutionResultName, "The linear regression solution.", symbolicSolution));
Results.Add(new Result(ConfidenceSolutionResultName, "Linear regression solution with parameter covariance matrix " +
"and calculation of prediction intervals", solution));
Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the linear regression solution on the training set.", new DoubleValue(rmsError)));
Results.Add(new Result("Estimated root mean square error (cross-validation)", "The estimated root of the mean of squared errors of the linear regression solution via cross validation.", new DoubleValue(cvRmsError)));
}
[Obsolete("Use CreateSolution() instead")]
public static ISymbolicRegressionSolution CreateLinearRegressionSolution(IRegressionProblemData problemData, out double rmsError, out double cvRmsError) {
IEnumerable doubleVariables;
IEnumerable>> factorVariables;
double[,] inputMatrix;
PrepareData(problemData, out inputMatrix, out doubleVariables, out factorVariables);
alglib.linearmodel lm = new alglib.linearmodel();
alglib.lrreport ar = new alglib.lrreport();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
int retVal = 1;
alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
rmsError = ar.rmserror;
cvRmsError = ar.cvrmserror;
double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
alglib.lrunpack(lm, out coefficients, out nFeatures);
int nFactorCoeff = factorVariables.Sum(kvp => kvp.Value.Count());
int nVarCoeff = doubleVariables.Count();
var tree = LinearModelToTreeConverter.CreateTree(factorVariables, coefficients.Take(nFactorCoeff).ToArray(),
doubleVariables.ToArray(), coefficients.Skip(nFactorCoeff).Take(nVarCoeff).ToArray(),
@const: coefficients[nFeatures]);
SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter()), (IRegressionProblemData)problemData.Clone());
solution.Model.Name = "Linear Regression Model";
solution.Name = "Linear Regression Solution";
return solution;
}
public static IRegressionSolution CreateSolution(IRegressionProblemData problemData, out double rmsError, out double cvRmsError) {
IEnumerable doubleVariables;
IEnumerable>> factorVariables;
double[,] inputMatrix;
PrepareData(problemData, out inputMatrix, out doubleVariables, out factorVariables);
alglib.linearmodel lm = new alglib.linearmodel();
alglib.lrreport ar = new alglib.lrreport();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
int retVal = 1;
alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
rmsError = ar.rmserror;
cvRmsError = ar.cvrmserror;
// get parameters of the model
double[] w;
int nVars;
alglib.lrunpack(lm, out w, out nVars);
// ar.c is the covariation matrix, array[0..NVars,0..NVars].
// C[i, j] = Cov(A[i], A[j])
var solution = new LinearRegressionModel(w, ar.c, cvRmsError, problemData.TargetVariable, doubleVariables, factorVariables)
.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
solution.Name = "Linear Regression Solution";
return solution;
}
private static void PrepareData(IRegressionProblemData problemData,
out double[,] inputMatrix,
out IEnumerable doubleVariables,
out IEnumerable>> factorVariables) {
var dataset = problemData.Dataset;
string targetVariable = problemData.TargetVariable;
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
IEnumerable rows = problemData.TrainingIndices;
doubleVariables = allowedInputVariables.Where(dataset.VariableHasType);
var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType);
factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows);
double[,] binaryMatrix = dataset.ToArray(factorVariables, rows);
double[,] doubleVarMatrix = dataset.ToArray(doubleVariables.Concat(new string[] { targetVariable }), rows);
inputMatrix = binaryMatrix.HorzCat(doubleVarMatrix);
if (inputMatrix.ContainsNanOrInfinity())
throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset.");
}
#endregion
}
}