#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HEAL.Attic;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableType("1BF7BEFB-6739-48AA-89BC-B632E72D148C")]
// this class is used as a surrogate for persistence of an actual GBT model
// since the actual GBT model would be very large when persisted we only store all necessary information to
// recalculate the actual GBT model on demand
[Item("Gradient boosted tree model", "")]
public sealed class GradientBoostedTreesModelSurrogate : RegressionModel, IGradientBoostedTreesModel {
// don't store the actual model!
// the actual model is only recalculated when necessary
private readonly Lazy actualModel;
private IGradientBoostedTreesModel ActualModel {
get { return actualModel.Value; }
}
[Storable]
private readonly IRegressionProblemData trainingProblemData;
[Storable]
private readonly uint seed;
[Storable]
private ILossFunction lossFunction;
[Storable]
private double r;
[Storable]
private double m;
[Storable]
private double nu;
[Storable]
private int iterations;
[Storable]
private int maxSize;
public override IEnumerable VariablesUsedForPrediction {
get {
return ActualModel.Models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x);
}
}
[StorableConstructor]
private GradientBoostedTreesModelSurrogate(StorableConstructorFlag _) : base(_) {
actualModel = new Lazy(() => RecalculateModel());
}
private GradientBoostedTreesModelSurrogate(GradientBoostedTreesModelSurrogate original, Cloner cloner)
: base(original, cloner) {
IGradientBoostedTreesModel clonedModel = null;
if (original.actualModel.IsValueCreated) clonedModel = cloner.Clone(original.ActualModel);
actualModel = new Lazy(CreateLazyInitFunc(clonedModel)); // only capture clonedModel in the closure
this.trainingProblemData = cloner.Clone(original.trainingProblemData);
this.lossFunction = cloner.Clone(original.lossFunction);
this.seed = original.seed;
this.iterations = original.iterations;
this.maxSize = original.maxSize;
this.r = original.r;
this.m = original.m;
this.nu = original.nu;
}
private Func CreateLazyInitFunc(IGradientBoostedTreesModel clonedModel) {
return () => {
return clonedModel ?? RecalculateModel();
};
}
// create only the surrogate model without an actual model
private GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed,
ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu)
: base(trainingProblemData.TargetVariable, "Gradient boosted tree model", string.Empty) {
this.trainingProblemData = trainingProblemData;
this.seed = seed;
this.lossFunction = lossFunction;
this.iterations = iterations;
this.maxSize = maxSize;
this.r = r;
this.m = m;
this.nu = nu;
actualModel = new Lazy(() => RecalculateModel());
}
// wrap an actual model in a surrograte
public GradientBoostedTreesModelSurrogate(IGradientBoostedTreesModel model, IRegressionProblemData trainingProblemData, uint seed,
ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu)
: this(trainingProblemData, seed, lossFunction, iterations, maxSize, r, m, nu) {
actualModel = new Lazy(() => model);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new GradientBoostedTreesModelSurrogate(this, cloner);
}
// forward message to actual model (recalculate model first if necessary)
public override IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
return ActualModel.GetEstimatedValues(dataset, rows);
}
public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
}
private IGradientBoostedTreesModel RecalculateModel() {
return GradientBoostedTreesAlgorithmStatic.TrainGbm(trainingProblemData, lossFunction, maxSize, nu, r, m, iterations, seed).Model;
}
public IEnumerable Models {
get {
return ActualModel.Models;
}
}
public IEnumerable Weights {
get {
return ActualModel.Weights;
}
}
}
}