[8417] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8417] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[8323] | 21 |
|
---|
[8417] | 22 | using System;
|
---|
[8484] | 23 | using System.Collections.Generic;
|
---|
[8417] | 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[8582] | 26 | using HeuristicLab.Data;
|
---|
[8982] | 27 | using HeuristicLab.Parameters;
|
---|
[16565] | 28 | using HEAL.Attic;
|
---|
[8417] | 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16565] | 31 | [StorableType("198B5472-6CAA-4C39-BB1F-6EC16CB7801B")]
|
---|
[8417] | 32 | [Item(Name = "CovariancePeriodic", Description = "Periodic covariance function for Gaussian processes.")]
|
---|
[8612] | 33 | public sealed class CovariancePeriodic : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 34 |
|
---|
[8582] | 35 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 36 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8582] | 37 | }
|
---|
[8612] | 38 |
|
---|
[8582] | 39 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
[8982] | 40 | get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
|
---|
[8582] | 41 | }
|
---|
[8612] | 42 |
|
---|
[8582] | 43 | public IValueParameter<DoubleValue> PeriodParameter {
|
---|
[8982] | 44 | get { return (IValueParameter<DoubleValue>)Parameters["Period"]; }
|
---|
[8582] | 45 | }
|
---|
| 46 |
|
---|
[10489] | 47 | private bool HasFixedScaleParameter {
|
---|
| 48 | get { return ScaleParameter.Value != null; }
|
---|
| 49 | }
|
---|
| 50 | private bool HasFixedInverseLengthParameter {
|
---|
| 51 | get { return InverseLengthParameter.Value != null; }
|
---|
| 52 | }
|
---|
| 53 | private bool HasFixedPeriodParameter {
|
---|
| 54 | get { return PeriodParameter.Value != null; }
|
---|
| 55 | }
|
---|
[8582] | 56 |
|
---|
[10489] | 57 |
|
---|
[8417] | 58 | [StorableConstructor]
|
---|
[16565] | 59 | private CovariancePeriodic(StorableConstructorFlag _) : base(_) { }
|
---|
[8612] | 60 | private CovariancePeriodic(CovariancePeriodic original, Cloner cloner)
|
---|
[8417] | 61 | : base(original, cloner) {
|
---|
| 62 | }
|
---|
[8582] | 63 |
|
---|
[8417] | 64 | public CovariancePeriodic()
|
---|
| 65 | : base() {
|
---|
[8612] | 66 | Name = ItemName;
|
---|
| 67 | Description = ItemDescription;
|
---|
[8678] | 68 |
|
---|
[8982] | 69 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of the periodic covariance function."));
|
---|
| 70 | Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter for the periodic covariance function."));
|
---|
| 71 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Period", "The period parameter for the periodic covariance function."));
|
---|
[8417] | 72 | }
|
---|
[8323] | 73 |
|
---|
[8417] | 74 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 75 | return new CovariancePeriodic(this, cloner);
|
---|
[8323] | 76 | }
|
---|
| 77 |
|
---|
[8982] | 78 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[10489] | 79 | return (HasFixedScaleParameter ? 0 : 1) +
|
---|
| 80 | (HasFixedPeriodParameter ? 0 : 1) +
|
---|
| 81 | (HasFixedInverseLengthParameter ? 0 : 1);
|
---|
[8323] | 82 | }
|
---|
| 83 |
|
---|
[8982] | 84 | public void SetParameter(double[] p) {
|
---|
| 85 | double scale, inverseLength, period;
|
---|
| 86 | GetParameterValues(p, out scale, out period, out inverseLength);
|
---|
| 87 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 88 | PeriodParameter.Value = new DoubleValue(period);
|
---|
| 89 | InverseLengthParameter.Value = new DoubleValue(inverseLength);
|
---|
[8582] | 90 | }
|
---|
| 91 |
|
---|
[8982] | 92 |
|
---|
[10489] | 93 | private void GetParameterValues(double[]
|
---|
[9108] | 94 | p, out double scale, out double period, out double inverseLength) {
|
---|
[8982] | 95 | // gather parameter values
|
---|
| 96 | int c = 0;
|
---|
[10489] | 97 | if (HasFixedInverseLengthParameter) {
|
---|
[8982] | 98 | inverseLength = InverseLengthParameter.Value.Value;
|
---|
| 99 | } else {
|
---|
| 100 | inverseLength = 1.0 / Math.Exp(p[c]);
|
---|
| 101 | c++;
|
---|
[8582] | 102 | }
|
---|
[10489] | 103 | if (HasFixedPeriodParameter) {
|
---|
[8982] | 104 | period = PeriodParameter.Value.Value;
|
---|
| 105 | } else {
|
---|
| 106 | period = Math.Exp(p[c]);
|
---|
| 107 | c++;
|
---|
[8582] | 108 | }
|
---|
[10489] | 109 | if (HasFixedScaleParameter) {
|
---|
[8982] | 110 | scale = ScaleParameter.Value.Value;
|
---|
| 111 | } else {
|
---|
| 112 | scale = Math.Exp(2 * p[c]);
|
---|
| 113 | c++;
|
---|
[8582] | 114 | }
|
---|
[8982] | 115 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePeriodic", "p");
|
---|
[8582] | 116 | }
|
---|
| 117 |
|
---|
[13784] | 118 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 119 | double inverseLength, period, scale;
|
---|
| 120 | GetParameterValues(p, out scale, out period, out inverseLength);
|
---|
[10489] | 121 | var fixedInverseLength = HasFixedInverseLengthParameter;
|
---|
| 122 | var fixedPeriod = HasFixedPeriodParameter;
|
---|
| 123 | var fixedScale = HasFixedScaleParameter;
|
---|
[8982] | 124 | // create functions
|
---|
| 125 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 126 | cov.Covariance = (x, i, j) => {
|
---|
| 127 | double k = i == j ? 0.0 : GetDistance(x, x, i, j, columnIndices);
|
---|
| 128 | k = Math.PI * k / period;
|
---|
| 129 | k = Math.Sin(k) * inverseLength;
|
---|
| 130 | k = k * k;
|
---|
[8323] | 131 |
|
---|
[8982] | 132 | return scale * Math.Exp(-2.0 * k);
|
---|
| 133 | };
|
---|
| 134 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
| 135 | double k = GetDistance(x, xt, i, j, columnIndices);
|
---|
| 136 | k = Math.PI * k / period;
|
---|
| 137 | k = Math.Sin(k) * inverseLength;
|
---|
| 138 | k = k * k;
|
---|
| 139 |
|
---|
| 140 | return scale * Math.Exp(-2.0 * k);
|
---|
| 141 | };
|
---|
[10489] | 142 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, period, inverseLength, fixedInverseLength, fixedPeriod, fixedScale);
|
---|
[8982] | 143 | return cov;
|
---|
[8323] | 144 | }
|
---|
| 145 |
|
---|
[13784] | 146 | private static IList<double> GetGradient(double[,] x, int i, int j, int[] columnIndices, double scale, double period, double inverseLength,
|
---|
[10489] | 147 | bool fixedInverseLength, bool fixedPeriod, bool fixedScale) {
|
---|
[9211] | 148 | double k = i == j ? 0.0 : Math.PI * GetDistance(x, x, i, j, columnIndices) / period;
|
---|
| 149 | double gradient = Math.Sin(k) * inverseLength;
|
---|
[8484] | 150 | gradient *= gradient;
|
---|
[13784] | 151 | var g = new List<double>(3);
|
---|
| 152 | if (!fixedInverseLength)
|
---|
| 153 | g.Add(4.0 * scale * Math.Exp(-2.0 * gradient) * gradient);
|
---|
[10489] | 154 | if (!fixedPeriod) {
|
---|
| 155 | double r = Math.Sin(k) * inverseLength;
|
---|
[13784] | 156 | g.Add(2.0 * k * scale * Math.Exp(-2 * r * r) * Math.Sin(2 * k) * inverseLength * inverseLength);
|
---|
[10489] | 157 | }
|
---|
| 158 | if (!fixedScale)
|
---|
[13784] | 159 | g.Add(2.0 * scale * Math.Exp(-2 * gradient));
|
---|
| 160 | return g;
|
---|
[8484] | 161 | }
|
---|
| 162 |
|
---|
[13721] | 163 | private static double GetDistance(double[,] x, double[,] xt, int i, int j, int[] columnIndices) {
|
---|
| 164 | return Math.Sqrt(Util.SqrDist(x, i, xt, j, columnIndices, 1));
|
---|
[8323] | 165 | }
|
---|
| 166 | }
|
---|
| 167 | }
|
---|