#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceMask",
Description = "Masking covariance function for dimension selection can be used to apply a covariance function only on certain input dimensions.")]
public sealed class CovarianceMask : ParameterizedNamedItem, ICovarianceFunction {
public IValueParameter SelectedDimensionsParameter {
get { return (IValueParameter)Parameters["SelectedDimensions"]; }
}
public IValueParameter CovarianceFunctionParameter {
get { return (IValueParameter)Parameters["CovarianceFunction"]; }
}
[StorableConstructor]
private CovarianceMask(bool deserializing)
: base(deserializing) {
}
private CovarianceMask(CovarianceMask original, Cloner cloner)
: base(original, cloner) {
}
public CovarianceMask()
: base() {
Name = ItemName;
Description = ItemDescription;
Parameters.Add(new OptionalValueParameter("SelectedDimensions", "The dimensions on which the specified covariance function should be applied to."));
Parameters.Add(new ValueParameter("CovarianceFunction", "The covariance function that should be scaled.", new CovarianceSquaredExponentialIso()));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceMask(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
if (SelectedDimensionsParameter.Value == null) return CovarianceFunctionParameter.Value.GetNumberOfParameters(numberOfVariables);
else return CovarianceFunctionParameter.Value.GetNumberOfParameters(SelectedDimensionsParameter.Value.Length);
}
public void SetParameter(double[] p) {
CovarianceFunctionParameter.Value.SetParameter(p);
}
public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
var cov = CovarianceFunctionParameter.Value;
var selectedDimensions = SelectedDimensionsParameter.Value;
return cov.GetParameterizedCovarianceFunction(p, selectedDimensions.Intersect(columnIndices).ToArray());
}
}
}