#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Problems.DataAnalysis;
using HEAL.Attic;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableType("A6293516-C146-469D-B248-31B866A1D94F")]
public sealed class RegressionTreeParameters : Item {
private readonly ISplitter splitter;
private readonly IPruning pruning;
private readonly ILeafModel leafModel;
private readonly int minLeafSize;
private readonly IRegressionProblemData problemData;
private readonly IRandom random;
public ISplitter Splitter {
get { return splitter; }
}
public IPruning Pruning {
get { return pruning; }
}
public ILeafModel LeafModel {
get { return leafModel; }
}
public int MinLeafSize {
get { return minLeafSize; }
}
private IRegressionProblemData ProblemData {
get { return problemData; }
}
public IRandom Random {
get { return random; }
}
public IEnumerable AllowedInputVariables {
get { return ProblemData.AllowedInputVariables; }
}
public string TargetVariable {
get { return ProblemData.TargetVariable; }
}
public IDataset Data {
get { return ProblemData.Dataset; }
}
#region Constructors & Cloning
[StorableConstructor]
private RegressionTreeParameters(StorableConstructorFlag _) : base(_) { }
private RegressionTreeParameters(RegressionTreeParameters original, Cloner cloner) : base(original, cloner) {
problemData = cloner.Clone(original.problemData);
random = cloner.Clone(original.random);
leafModel = cloner.Clone(original.leafModel);
splitter = cloner.Clone(original.splitter);
pruning = cloner.Clone(original.pruning);
minLeafSize = original.minLeafSize;
}
public RegressionTreeParameters(IPruning pruning, int minleafSize, ILeafModel leafModel,
IRegressionProblemData problemData, IRandom random, ISplitter splitter) {
this.problemData = problemData;
this.random = random;
this.leafModel = leafModel;
this.splitter = splitter;
this.pruning = pruning;
minLeafSize = Math.Max(pruning.MinLeafSize(problemData, leafModel), Math.Max(minleafSize, leafModel.MinLeafSize(problemData)));
}
public RegressionTreeParameters(ILeafModel modeltype, IRegressionProblemData problemData, IRandom random) {
this.problemData = problemData;
this.random = random;
leafModel = modeltype;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new RegressionTreeParameters(this, cloner);
}
#endregion
}
}