#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Problems.DataAnalysis; using HEAL.Attic; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableType("A6293516-C146-469D-B248-31B866A1D94F")] public sealed class RegressionTreeParameters : Item { private readonly ISplitter splitter; private readonly IPruning pruning; private readonly ILeafModel leafModel; private readonly int minLeafSize; private readonly IRegressionProblemData problemData; private readonly IRandom random; public ISplitter Splitter { get { return splitter; } } public IPruning Pruning { get { return pruning; } } public ILeafModel LeafModel { get { return leafModel; } } public int MinLeafSize { get { return minLeafSize; } } private IRegressionProblemData ProblemData { get { return problemData; } } public IRandom Random { get { return random; } } public IEnumerable AllowedInputVariables { get { return ProblemData.AllowedInputVariables; } } public string TargetVariable { get { return ProblemData.TargetVariable; } } public IDataset Data { get { return ProblemData.Dataset; } } #region Constructors & Cloning [StorableConstructor] private RegressionTreeParameters(StorableConstructorFlag _) : base(_) { } private RegressionTreeParameters(RegressionTreeParameters original, Cloner cloner) : base(original, cloner) { problemData = cloner.Clone(original.problemData); random = cloner.Clone(original.random); leafModel = cloner.Clone(original.leafModel); splitter = cloner.Clone(original.splitter); pruning = cloner.Clone(original.pruning); minLeafSize = original.minLeafSize; } public RegressionTreeParameters(IPruning pruning, int minleafSize, ILeafModel leafModel, IRegressionProblemData problemData, IRandom random, ISplitter splitter) { this.problemData = problemData; this.random = random; this.leafModel = leafModel; this.splitter = splitter; this.pruning = pruning; minLeafSize = Math.Max(pruning.MinLeafSize(problemData, leafModel), Math.Max(minleafSize, leafModel.MinLeafSize(problemData))); } public RegressionTreeParameters(ILeafModel modeltype, IRegressionProblemData problemData, IRandom random) { this.problemData = problemData; this.random = random; leafModel = modeltype; } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionTreeParameters(this, cloner); } #endregion } }