#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Problems.DataAnalysis;
using HEAL.Attic;
namespace HeuristicLab.Algorithms.DataAnalysis {
public static class RegressionTreeAnalyzer {
private const string ConditionResultName = "Condition";
private const string CoverResultName = "Covered Instances";
private const string CoverageDiagramResultName = "Coverage";
private const string RuleModelResultName = "RuleModel";
public static Dictionary GetRuleVariableFrequences(RegressionRuleSetModel ruleSetModel) {
var res = ruleSetModel.VariablesUsedForPrediction.ToDictionary(x => x, x => 0);
foreach (var rule in ruleSetModel.Rules)
foreach (var att in rule.SplitAttributes)
res[att]++;
return res;
}
public static Dictionary GetTreeVariableFrequences(RegressionNodeTreeModel treeModel) {
var res = treeModel.VariablesUsedForPrediction.ToDictionary(x => x, x => 0);
var root = treeModel.Root;
foreach (var cur in root.EnumerateNodes().Where(x => !x.IsLeaf))
res[cur.SplitAttribute]++;
return res;
}
public static Result CreateLeafDepthHistogram(RegressionNodeTreeModel treeModel) {
var list = new List();
GetLeafDepths(treeModel.Root, 0, list);
var row = new DataRow("Depths", "", list.Select(x => (double)x)) {
VisualProperties = {ChartType = DataRowVisualProperties.DataRowChartType.Histogram}
};
var hist = new DataTable("LeafDepths");
hist.Rows.Add(row);
return new Result(hist.Name, hist);
}
public static Result CreateRulesResult(RegressionRuleSetModel ruleSetModel, IRegressionProblemData pd, string resultName, bool displayModels) {
var res = new ResultCollection();
var i = 0;
foreach (var rule in ruleSetModel.Rules)
res.Add(new Result("Rule" + i++, CreateRulesResult(rule, pd, displayModels, out pd)));
return new Result(resultName, res);
}
public static IResult CreateCoverageDiagram(RegressionRuleSetModel setModel, IRegressionProblemData problemData) {
var res = new DataTable(CoverageDiagramResultName);
var training = CountCoverage(setModel, problemData.Dataset, problemData.TrainingIndices);
var test = CountCoverage(setModel, problemData.Dataset, problemData.TestIndices);
res.Rows.Add(new DataRow("Training", "", training));
res.Rows.Add(new DataRow("Test", "", test));
foreach (var row in res.Rows)
row.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Columns;
res.VisualProperties.XAxisMaximumFixedValue = training.Count + 1;
res.VisualProperties.XAxisMaximumAuto = false;
res.VisualProperties.XAxisMinimumFixedValue = 0;
res.VisualProperties.XAxisMinimumAuto = false;
res.VisualProperties.XAxisTitle = "Rule";
res.VisualProperties.YAxisTitle = "Covered Instances";
return new Result(CoverageDiagramResultName, res);
}
private static void GetLeafDepths(RegressionNodeModel n, int depth, ICollection res) {
if (n == null) return;
if (n.Left == null && n.Right == null) res.Add(depth);
else {
GetLeafDepths(n.Left, depth + 1, res);
GetLeafDepths(n.Right, depth + 1, res);
}
}
private static IScope CreateRulesResult(RegressionRuleModel regressionRuleModel, IRegressionProblemData pd, bool displayModels, out IRegressionProblemData notCovered) {
var training = pd.TrainingIndices.Where(x => !regressionRuleModel.Covers(pd.Dataset, x)).ToArray();
var test = pd.TestIndices.Where(x => !regressionRuleModel.Covers(pd.Dataset, x)).ToArray();
if (training.Length > 0 || test.Length > 0) {
var data = new Dataset(pd.Dataset.DoubleVariables, pd.Dataset.DoubleVariables.Select(v => pd.Dataset.GetDoubleValues(v, training.Concat(test)).ToArray()));
notCovered = new RegressionProblemData(data, pd.AllowedInputVariables, pd.TargetVariable);
notCovered.TestPartition.Start = notCovered.TrainingPartition.End = training.Length;
notCovered.TestPartition.End = training.Length + test.Length;
} else notCovered = null;
var training2 = pd.TrainingIndices.Where(x => regressionRuleModel.Covers(pd.Dataset, x)).ToArray();
var test2 = pd.TestIndices.Where(x => regressionRuleModel.Covers(pd.Dataset, x)).ToArray();
var data2 = new Dataset(pd.Dataset.DoubleVariables, pd.Dataset.DoubleVariables.Select(v => pd.Dataset.GetDoubleValues(v, training2.Concat(test2)).ToArray()));
var covered = new RegressionProblemData(data2, pd.AllowedInputVariables, pd.TargetVariable);
covered.TestPartition.Start = covered.TrainingPartition.End = training2.Length;
covered.TestPartition.End = training2.Length + test2.Length;
var res2 = new Scope("RuleModels");
res2.Variables.Add(new Variable(ConditionResultName, new StringValue(regressionRuleModel.ToCompactString())));
res2.Variables.Add(new Variable(CoverResultName, new IntValue(pd.TrainingIndices.Count() - training.Length)));
if (displayModels)
res2.Variables.Add(new Variable(RuleModelResultName, regressionRuleModel.CreateRegressionSolution(covered)));
return res2;
}
private static IReadOnlyList CountCoverage(RegressionRuleSetModel setModel, IDataset data, IEnumerable rows) {
var rules = setModel.Rules.ToArray();
var res = new double[rules.Length];
foreach (var row in rows)
for (var i = 0; i < rules.Length; i++)
if (rules[i].Covers(data, row)) {
res[i]++;
break;
}
return res;
}
public static void AnalyzeNodes(RegressionNodeTreeModel tree, ResultCollection results, IRegressionProblemData pd) {
var dict = new Dictionary();
var trainingLeafRows = new Dictionary>();
var testLeafRows = new Dictionary>();
var modelNumber = new IntValue(1);
var symtree = new SymbolicExpressionTree(MirrorTree(tree.Root, dict, trainingLeafRows, testLeafRows, modelNumber, pd.Dataset, pd.TrainingIndices.ToList(), pd.TestIndices.ToList()));
results.AddOrUpdateResult("DecisionTree", symtree);
if (dict.Count > 200) return;
var models = new Scope("NodeModels");
results.AddOrUpdateResult("NodeModels", models);
foreach (var m in dict.Keys.OrderBy(x => x))
models.Variables.Add(new Variable("Model " + m, dict[m].CreateRegressionSolution(Subselect(pd, trainingLeafRows[m], testLeafRows[m]))));
}
public static void PruningChart(RegressionNodeTreeModel tree, ComplexityPruning pruning, ResultCollection results) {
var nodes = new Queue();
nodes.Enqueue(tree.Root);
var max = 0.0;
var strenghts = new SortedList();
while (nodes.Count > 0) {
var n = nodes.Dequeue();
if (n.IsLeaf) {
max++;
continue;
}
if (!strenghts.ContainsKey(n.PruningStrength)) strenghts.Add(n.PruningStrength, 0);
strenghts[n.PruningStrength]++;
nodes.Enqueue(n.Left);
nodes.Enqueue(n.Right);
}
if (strenghts.Count == 0) return;
var plot = new ScatterPlot("Pruned Sizes", "") {
VisualProperties = {
XAxisTitle = "Pruning Strength",
YAxisTitle = "Tree Size",
XAxisMinimumAuto = false,
XAxisMinimumFixedValue = 0
}
};
var row = new ScatterPlotDataRow("TreeSizes", "", new List>());
row.Points.Add(new Point2D(pruning.PruningStrength, max));
var fillerDots = new Queue();
var minX = pruning.PruningStrength;
var maxX = strenghts.Last().Key;
var size = (maxX - minX) / 200;
for (var x = minX; x <= maxX; x += size) {
fillerDots.Enqueue(x);
}
foreach (var strenght in strenghts.Keys) {
while (fillerDots.Count > 0 && strenght > fillerDots.Peek())
row.Points.Add(new Point2D(fillerDots.Dequeue(), max));
max -= strenghts[strenght];
row.Points.Add(new Point2D(strenght, max));
}
row.VisualProperties.PointSize = 6;
plot.Rows.Add(row);
results.AddOrUpdateResult("PruningSizes", plot);
}
private static IRegressionProblemData Subselect(IRegressionProblemData data, IReadOnlyList training, IReadOnlyList test) {
var dataset = RegressionTreeUtilities.ReduceDataset(data.Dataset, training.Concat(test).ToList(), data.AllowedInputVariables.ToList(), data.TargetVariable);
var res = new RegressionProblemData(dataset, data.AllowedInputVariables, data.TargetVariable);
res.TrainingPartition.Start = 0;
res.TrainingPartition.End = training.Count;
res.TestPartition.Start = training.Count;
res.TestPartition.End = training.Count + test.Count;
return res;
}
private static SymbolicExpressionTreeNode MirrorTree(RegressionNodeModel regressionNode, IDictionary dict,
IDictionary> trainingLeafRows,
IDictionary> testLeafRows,
IntValue nextId, IDataset data, IReadOnlyList trainingRows, IReadOnlyList testRows) {
if (regressionNode.IsLeaf) {
var i = nextId.Value++;
dict.Add(i, regressionNode);
trainingLeafRows.Add(i, trainingRows);
testLeafRows.Add(i, testRows);
return new SymbolicExpressionTreeNode(new TextSymbol("Model " + i + "\n(" + trainingRows.Count + "/" + testRows.Count + ")"));
}
var pftext = "\npf = " + regressionNode.PruningStrength.ToString("0.###");
var text = regressionNode.SplitAttribute + " <= " + regressionNode.SplitValue.ToString("0.###");
if (!double.IsNaN(regressionNode.PruningStrength)) text += pftext;
var textNode = new SymbolicExpressionTreeNode(new TextSymbol(text));
IReadOnlyList lTrainingRows, rTrainingRows;
IReadOnlyList lTestRows, rTestRows;
RegressionTreeUtilities.SplitRows(trainingRows, data, regressionNode.SplitAttribute, regressionNode.SplitValue, out lTrainingRows, out rTrainingRows);
RegressionTreeUtilities.SplitRows(testRows, data, regressionNode.SplitAttribute, regressionNode.SplitValue, out lTestRows, out rTestRows);
textNode.AddSubtree(MirrorTree(regressionNode.Left, dict, trainingLeafRows, testLeafRows, nextId, data, lTrainingRows, lTestRows));
textNode.AddSubtree(MirrorTree(regressionNode.Right, dict, trainingLeafRows, testLeafRows, nextId, data, rTrainingRows, rTestRows));
return textNode;
}
[StorableType("D5540C63-310B-4D6F-8A3D-6C1A08DE7F80")]
private sealed class TextSymbol : Symbol {
[StorableConstructor]
private TextSymbol(StorableConstructorFlag _) : base(_) { }
private TextSymbol(Symbol original, Cloner cloner) : base(original, cloner) { }
public TextSymbol(string name) : base(name, "") {
Name = name;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new TextSymbol(this, cloner);
}
public override int MinimumArity {
get { return 0; }
}
public override int MaximumArity {
get { return int.MaxValue; }
}
}
}
}