#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Problems.DataAnalysis;
using HEAL.Attic;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableType("4E5B8317-648D-4A5A-A3F7-A1A5BEB9AA69")]
public sealed class ComponentReducedLinearModel : RegressionModel {
[Storable]
private IRegressionModel Model;
[Storable]
private PrincipleComponentTransformation Pca;
[StorableConstructor]
private ComponentReducedLinearModel(StorableConstructorFlag _) : base(_) { }
private ComponentReducedLinearModel(ComponentReducedLinearModel original, Cloner cloner) : base(original, cloner) {
Model = cloner.Clone(original.Model);
Pca = cloner.Clone(original.Pca);
}
public ComponentReducedLinearModel(string targetVariable, IRegressionModel model, PrincipleComponentTransformation pca) : base(targetVariable) {
Model = model;
Pca = pca;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ComponentReducedLinearModel(this, cloner);
}
public override IEnumerable VariablesUsedForPrediction {
get { return Model.VariablesUsedForPrediction; }
}
public override IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
var data = ReduceDataset(dataset, rows.ToArray());
return Model.GetEstimatedValues(Pca.TransformDataset(data), Enumerable.Range(0, data.Rows));
}
public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new RegressionSolution(this, problemData);
}
private IDataset ReduceDataset(IDataset data, IReadOnlyList rows) {
return new Dataset(data.DoubleVariables, data.DoubleVariables.Select(v => data.GetDoubleValues(v, rows).ToList()));
}
}
}