using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; using HeuristicLab.Algorithms.DataAnalysis; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.Instances.DataAnalysis; using HeuristicLab.Scripting; using LibSVM; public class SVMClassificationCrossValidationScript : HeuristicLab.Scripting.CSharpScriptBase { /* Maximum degree of parallelism (specifies whether or not the grid search should be parallelized) */ const int maximumDegreeOfParallelism = 4; /* Number of crossvalidation folds: */ const int numberOfFolds = 5; /* Specify whether the folds should be shuffled */ const bool shuffleFolds = false; /* The tunable SVM parameters: - "C" (penalty factor) effects the trade-off between complexity and proportion of nonseparable samples and must be selected by the user. Can have any positive value. - "nu" is an upper bound on the fraction of margin errors and a lower bound of the fraction of support vectors relative to the total number of training examples. - "degree" represents the polynomial kernel degree - "eps" (epsilon) determines the level of accuracy of the approximated function. It controls the width of the epsilon-insensitive zone used to fit the training data. With optimal values of epsilon, the parameter C has negligible effect. - "degree" represents the degree of the polynomial kernel - "kernel_type" specifies the kernel to be used: linear, polynomial, radial basis or sigmoidal. Valid values: svm_parameter.LINEAR, svm_parameter.POLY, svm_parameter.RBF, svm_parameter.SIGMOID Comment or uncomment the parameter ranges below as needed. */ static Dictionary> svmParameterRanges = new Dictionary> { { "svm_type", new List {svm_parameter.NU_SVC } }, { "kernel_type", new List { svm_parameter.RBF }}, { "C", ValueGenerator.GenerateSteps(-1m, 10, 1).Select(x => Math.Pow(2,(double)x)) }, { "gamma", ValueGenerator.GenerateSteps(-4m, -1, 1).Select(x => Math.Pow(2,(double)x)) }, // { "eps", ValueGenerator.GenerateSteps(-8m, -1, 1).Select(x => Math.Pow(2, (double)x)) }, { "nu" , ValueGenerator.GenerateSteps(-10m, 0, 1m).Select(x => Math.Pow(2, (double)x)) }, // { "degree", ValueGenerator.GenerateSteps(1m, 4, 1).Select(x => (double)x) } }; static Dictionary svmTypes = new Dictionary { { svm_parameter.NU_SVC, "NU_SVC" }, { svm_parameter.C_SVC, "C_SVC" } }; static Dictionary kernelTypes = new Dictionary { { svm_parameter.LINEAR, "LINEAR" }, { svm_parameter.POLY, "POLY" }, { svm_parameter.RBF, "RBF" }, { svm_parameter.SIGMOID, "SIGMOID" } }; private static SupportVectorClassificationSolution SvmGridSearch(IClassificationProblemData problemData, out svm_parameter bestParameters, out int nSv, out double cvMse) { bestParameters = SupportVectorMachineUtil.GridSearch(out cvMse, problemData, svmParameterRanges, numberOfFolds, shuffleFolds, maximumDegreeOfParallelism); double trainingError, testError; string svmType = svmTypes[bestParameters.svm_type]; string kernelType = kernelTypes[bestParameters.kernel_type]; var svm_solution = SupportVectorClassification.CreateSupportVectorClassificationSolution(problemData, problemData.AllowedInputVariables, svmType, kernelType, bestParameters.C, bestParameters.nu, bestParameters.gamma, bestParameters.degree, out trainingError, out testError, out nSv); return svm_solution; } public override void Main() { var variables = (Variables)vars; var item = variables.SingleOrDefault(x => x.Value is IClassificationProblem || x.Value is IClassificationProblemData); if (item.Equals(default(KeyValuePair))) throw new ArgumentException("Could not find a suitable problem or problem data."); string name = item.Key; IClassificationProblemData problemData; if (item.Value is IClassificationProblem) problemData = ((IClassificationProblem)item.Value).ProblemData; else problemData = (IClassificationProblemData)item.Value; int nSv; // number of support vectors double cvMse; svm_parameter bestParameters; var bestSolution = SvmGridSearch(problemData, out bestParameters, out nSv, out cvMse); vars["bestSolution"] = bestSolution; Console.WriteLine(name + " parameters: C = {0}, g = {1:0.000}, eps = {2:0.000}, nu = {3:0.000}, degree = {4}", bestParameters.C, bestParameters.gamma, bestParameters.eps, bestParameters.nu, bestParameters.degree); Console.WriteLine(name + " best solution accuracy (training): " + bestSolution.TrainingAccuracy + ", accuracy (test): " + bestSolution.TestAccuracy); var bestParametersCollection = new ParameterCollection(); foreach (var p in svmParameterRanges.Keys) { var getter = GenerateGetter(p); bestParametersCollection.Add(new FixedValueParameter(p, new DoubleValue(getter(bestParameters)))); } vars["bestParameters"] = bestParametersCollection; } private static Func GenerateGetter(string field) { var paramExpr = Expression.Parameter(typeof(svm_parameter)); var getterExpr = Expression.Convert(Expression.Field(paramExpr, field), typeof(double)); // cast to double Func f = Expression.Lambda>(getterExpr, paramExpr).Compile(); return f; } }