#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Core; using HeuristicLab.Tests; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Encodings.PermutationEncoding.Tests { /// ///This is a test class for MaximalPreservativeCrossover and is intended ///to contain all MaximalPreservativeCrossover Unit Tests /// [TestClass()] public class MaximalPreservativeCrossoverTest { /// ///A test for Cross /// [TestMethod] [TestCategory("Encodings.Permutation")] [TestProperty("Time", "short")] public void MaximalPreservativeCrossoverCrossTest() { TestRandom random = new TestRandom(); MaximalPreservativeCrossover_Accessor target = new MaximalPreservativeCrossover_Accessor(new PrivateObject(typeof(MaximalPreservativeCrossover))); // perform a test with more than two parents random.Reset(); bool exceptionFired = false; try { target.Cross(random, new ItemArray(new Permutation[] { new Permutation(PermutationTypes.RelativeUndirected, 4), new Permutation(PermutationTypes.RelativeUndirected, 4), new Permutation(PermutationTypes.RelativeUndirected, 4)})); } catch (System.InvalidOperationException) { exceptionFired = true; } Assert.IsTrue(exceptionFired); } /// ///A test for Apply /// [TestMethod] [TestCategory("Encodings.Permutation")] [TestProperty("Time", "short")] public void MaximalPreservativeCrossoverApplyTest() { TestRandom random = new TestRandom(); Permutation parent1, parent2, expected, actual; // The following test is based on an example from Larranaga, 1999. Genetic Algorithms for the Traveling Salesman Problem. random.Reset(); random.IntNumbers = new int[] { 3, 2 }; parent1 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 0, 1, 2, 3, 4, 5, 6, 7 }); Assert.IsTrue(parent1.Validate()); parent2 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 1, 3, 5, 7, 6, 4, 2, 0 }); Assert.IsTrue(parent2.Validate()); expected = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 1, 0, 2, 3, 4, 5, 7, 6 }); Assert.IsTrue(expected.Validate()); actual = MaximalPreservativeCrossover.Apply(random, parent1, parent2); Assert.IsTrue(actual.Validate()); Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual)); // perform a test when the two permutations are of unequal length random.Reset(); bool exceptionFired = false; try { MaximalPreservativeCrossover.Apply(random, new Permutation(PermutationTypes.RelativeUndirected, 8), new Permutation(PermutationTypes.RelativeUndirected, 6)); } catch (System.ArgumentException) { exceptionFired = true; } Assert.IsTrue(exceptionFired); } } }