#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.IO; using System.Linq; using HEAL.Attic; using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Problems.Instances.DataAnalysis; using HeuristicLab.Selection; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Tests { [TestClass] public class GPSymbolicRegressionSampleWithOSTest { private const string SampleFileName = "OSGP_SymReg"; private const int seed = 12345; private static readonly ProtoBufSerializer serializer = new ProtoBufSerializer(); [TestMethod] [TestCategory("Samples.Create")] [TestProperty("Time", "medium")] public void CreateGPSymbolicRegressionSampleWithOSTest() { var osga = CreateGpSymbolicRegressionSample(); string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension); serializer.Serialize(osga, path); } [TestMethod] [TestCategory("Samples.Execute")] [TestProperty("Time", "long")] public void RunGPSymbolicRegressionSampleWithOSTest() { var osga = CreateGpSymbolicRegressionSample(); osga.SetSeedRandomly.Value = false; osga.Seed.Value = seed; osga.MaximumGenerations.Value = 10; //reduce unit test runtime SamplesUtils.RunAlgorithm(osga); var bestTrainingSolution = (IRegressionSolution)osga.Results["Best training solution"].Value; if (Environment.Is64BitProcess) { // the following are the result values as produced on builder.heuristiclab.com // Unfortunately, running the same test on a different machine results in different values // For x86 environments the results below match but on x64 there is a difference // We tracked down the ConstantOptimizationEvaluator as a possible cause but have not // been able to identify the real cause. Presumably, execution on a Xeon and a Core i7 processor // leads to different results. Assert.AreEqual(0.99174959007940156, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8, Environment.NewLine + "Best Quality differs."); Assert.AreEqual(0.9836083751914968, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8, Environment.NewLine + "Current Average Quality differs."); Assert.AreEqual(0.98298394717065463, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8, Environment.NewLine + "Current Worst Quality differs."); Assert.AreEqual(10100, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions"), Environment.NewLine + "Evaluated Solutions differ."); Assert.AreEqual(0.99174959007940156, bestTrainingSolution.TrainingRSquared, 1E-8, Environment.NewLine + "Best Training Solution Training R² differs."); Assert.AreEqual(0.8962902319942232, bestTrainingSolution.TestRSquared, 1E-8, Environment.NewLine + "Best Training Solution Test R² differs."); } else { Assert.AreEqual(0.9971536312165723, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8, Environment.NewLine + "Best Qualitiy differs."); Assert.AreEqual(0.98382832370544937, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8, Environment.NewLine + "Current Average Quality differs."); Assert.AreEqual(0.960805603777699, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8, Environment.NewLine + "Current Worst Quality differs."); Assert.AreEqual(10500, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions"), Environment.NewLine + "Evaluated Solutions differ."); Assert.AreEqual(0.9971536312165723, bestTrainingSolution.TrainingRSquared, 1E-8, Environment.NewLine + "Best Training Solution Training R² differs."); Assert.AreEqual(0.010190137960908724, bestTrainingSolution.TestRSquared, 1E-8, Environment.NewLine + "Best Training Solution Test R² differs."); } } private OffspringSelectionGeneticAlgorithm CreateGpSymbolicRegressionSample() { var osga = new OffspringSelectionGeneticAlgorithm(); #region Problem Configuration var provider = new VariousInstanceProvider(seed); var instance = provider.GetDataDescriptors().First(x => x.Name.StartsWith("Spatial co-evolution")); var problemData = (RegressionProblemData)provider.LoadData(instance); var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.ProblemData = problemData; problem.Load(problemData); problem.BestKnownQuality.Value = 1.0; #region configure grammar var grammar = (TypeCoherentExpressionGrammar)problem.SymbolicExpressionTreeGrammar; grammar.ConfigureAsDefaultRegressionGrammar(); //symbols square, power, squareroot, root, log, exp, sine, cosine, tangent, variable var square = grammar.Symbols.OfType().Single(); var power = grammar.Symbols.OfType().Single(); var squareroot = grammar.Symbols.OfType().Single(); var root = grammar.Symbols.OfType().Single(); var cube = grammar.Symbols.OfType().Single(); var cuberoot = grammar.Symbols.OfType().Single(); var log = grammar.Symbols.OfType().Single(); var exp = grammar.Symbols.OfType().Single(); var sine = grammar.Symbols.OfType().Single(); var cosine = grammar.Symbols.OfType().Single(); var tangent = grammar.Symbols.OfType().Single(); var variable = grammar.Symbols.OfType().Single(); var powerSymbols = grammar.Symbols.Single(s => s.Name == "Power Functions"); powerSymbols.Enabled = true; square.Enabled = true; square.InitialFrequency = 1.0; foreach (var allowed in grammar.GetAllowedChildSymbols(square)) grammar.RemoveAllowedChildSymbol(square, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(square, 0)) grammar.RemoveAllowedChildSymbol(square, allowed, 0); grammar.AddAllowedChildSymbol(square, variable); power.Enabled = false; squareroot.Enabled = false; foreach (var allowed in grammar.GetAllowedChildSymbols(squareroot)) grammar.RemoveAllowedChildSymbol(squareroot, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(squareroot, 0)) grammar.RemoveAllowedChildSymbol(squareroot, allowed, 0); grammar.AddAllowedChildSymbol(squareroot, variable); cube.Enabled = false; cuberoot.Enabled = false; root.Enabled = false; log.Enabled = true; log.InitialFrequency = 1.0; foreach (var allowed in grammar.GetAllowedChildSymbols(log)) grammar.RemoveAllowedChildSymbol(log, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(log, 0)) grammar.RemoveAllowedChildSymbol(log, allowed, 0); grammar.AddAllowedChildSymbol(log, variable); exp.Enabled = true; exp.InitialFrequency = 1.0; foreach (var allowed in grammar.GetAllowedChildSymbols(exp)) grammar.RemoveAllowedChildSymbol(exp, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(exp, 0)) grammar.RemoveAllowedChildSymbol(exp, allowed, 0); grammar.AddAllowedChildSymbol(exp, variable); sine.Enabled = false; foreach (var allowed in grammar.GetAllowedChildSymbols(sine)) grammar.RemoveAllowedChildSymbol(sine, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(sine, 0)) grammar.RemoveAllowedChildSymbol(sine, allowed, 0); grammar.AddAllowedChildSymbol(sine, variable); cosine.Enabled = false; foreach (var allowed in grammar.GetAllowedChildSymbols(cosine)) grammar.RemoveAllowedChildSymbol(cosine, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(cosine, 0)) grammar.RemoveAllowedChildSymbol(cosine, allowed, 0); grammar.AddAllowedChildSymbol(cosine, variable); tangent.Enabled = false; foreach (var allowed in grammar.GetAllowedChildSymbols(tangent)) grammar.RemoveAllowedChildSymbol(tangent, allowed); foreach (var allowed in grammar.GetAllowedChildSymbols(tangent, 0)) grammar.RemoveAllowedChildSymbol(tangent, allowed, 0); grammar.AddAllowedChildSymbol(tangent, variable); #endregion problem.SymbolicExpressionTreeGrammar = grammar; // configure remaining problem parameters problem.MaximumSymbolicExpressionTreeLength.Value = 50; problem.MaximumSymbolicExpressionTreeDepth.Value = 12; problem.MaximumFunctionDefinitions.Value = 0; problem.MaximumFunctionArguments.Value = 0; var evaluator = new SymbolicRegressionConstantOptimizationEvaluator(); evaluator.ConstantOptimizationIterations.Value = 5; problem.EvaluatorParameter.Value = evaluator; problem.RelativeNumberOfEvaluatedSamplesParameter.Hidden = true; problem.SolutionCreatorParameter.Hidden = true; #endregion #region Algorithm Configuration osga.Problem = problem; osga.Name = "Offspring Selection Genetic Programming - Symbolic Regression"; osga.Description = "Genetic programming with strict offspring selection for solving a benchmark regression problem."; SamplesUtils.ConfigureOsGeneticAlgorithmParameters(osga, 100, 1, 25, 0.2, 50); var mutator = (MultiSymbolicExpressionTreeManipulator)osga.Mutator; mutator.Operators.OfType().Single().ShakingFactor = 0.1; mutator.Operators.OfType().Single().ShakingFactor = 1.0; osga.Analyzer.Operators.SetItemCheckedState( osga.Analyzer.Operators .OfType() .Single(), false); osga.Analyzer.Operators.SetItemCheckedState( osga.Analyzer.Operators .OfType() .First(), false); osga.ComparisonFactorModifierParameter.Hidden = true; osga.ComparisonFactorLowerBoundParameter.Hidden = true; osga.ComparisonFactorUpperBoundParameter.Hidden = true; osga.OffspringSelectionBeforeMutationParameter.Hidden = true; osga.SuccessRatioParameter.Hidden = true; osga.SelectedParentsParameter.Hidden = true; osga.ElitesParameter.Hidden = true; #endregion return osga; } } }