#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.IO; using System.Linq; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Persistence.Default.Xml; using HeuristicLab.Problems.Instances.TSPLIB; using HeuristicLab.Problems.TravelingSalesman; using HeuristicLab.Selection; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Tests { [TestClass] public class GATspSampleTest { private const string SampleFileName = "GA_TSP"; [TestMethod] [TestCategory("Samples.Create")] [TestProperty("Time", "medium")] public void CreateGaTspSampleTest() { var ga = CreateGaTspSample(); string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension); XmlGenerator.Serialize(ga, path); } [TestMethod] [TestCategory("Samples.Execute")] [TestProperty("Time", "long")] public void RunGaTspSampleTest() { var ga = CreateGaTspSample(); ga.SetSeedRandomly.Value = false; SamplesUtils.RunAlgorithm(ga); Assert.AreEqual(12332, SamplesUtils.GetDoubleResult(ga, "BestQuality")); Assert.AreEqual(13123.2, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality")); Assert.AreEqual(14538, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality")); Assert.AreEqual(99100, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions")); } private GeneticAlgorithm CreateGaTspSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration var provider = new TSPLIBTSPInstanceProvider(); var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single(); TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem(); tspProblem.Load(provider.LoadData(instance)); tspProblem.UseDistanceMatrix.Value = true; #endregion #region Algorithm Configuration ga.Name = "Genetic Algorithm - TSP"; ga.Description = "A genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)"; ga.Problem = tspProblem; SamplesUtils.ConfigureGeneticAlgorithmParameters( ga, 100, 1, 1000, 0.05); #endregion return ga; } } }