#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.TestFunctions { /// /// An operator that improves test functions solutions. /// /// /// It is implemented as described in Laguna, M. and Martí, R. (2003). Scatter Search: Methodology and Implementations in C. Operations Research/Computer Science Interfaces Series, Vol. 24. Springer.
/// The operator uses an implementation of the Nelder-Mead method with adaptive parameters as described in Gao, F. and Han, L. (2010). Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, Vol. 51. Springer. and conducts relection, expansion, contraction and reduction on the test functions solution. ///
[Item("SingleObjectiveTestFunctionImprovementOperator", "An operator that improves test functions solutions. It is implemented as described in Laguna, M. and Martí, R. (2003). Scatter Search: Methodology and Implementations in C. Operations Research/Computer Science Interfaces Series, Vol. 24. Springer.")] [StorableClass] public sealed class SingleObjectiveTestFunctionImprovementOperator : SingleSuccessorOperator, ISingleObjectiveImprovementOperator { #region Parameter properties public IValueParameter AlphaParameter { get { return (IValueParameter)Parameters["Alpha"]; } } public IValueParameter BetaParameter { get { return (IValueParameter)Parameters["Beta"]; } } public IValueLookupParameter BoundsParameter { get { return (IValueLookupParameter)Parameters["Bounds"]; } } public ScopeParameter CurrentScopeParameter { get { return (ScopeParameter)Parameters["CurrentScope"]; } } public IValueParameter DeltaParameter { get { return (IValueParameter)Parameters["Delta"]; } } public IValueLookupParameter EvaluatorParameter { get { return (IValueLookupParameter)Parameters["Evaluator"]; } } public IValueParameter GammaParameter { get { return (IValueParameter)Parameters["Gamma"]; } } public IValueLookupParameter ImprovementAttemptsParameter { get { return (IValueLookupParameter)Parameters["ImprovementAttempts"]; } } public IValueLookupParameter SolutionParameter { get { return (IValueLookupParameter)Parameters["Solution"]; } } #endregion #region Properties private DoubleValue Alpha { get { return AlphaParameter.Value; } } private DoubleValue Beta { get { return BetaParameter.Value; } } private DoubleMatrix Bounds { get { return BoundsParameter.ActualValue; } } public IScope CurrentScope { get { return CurrentScopeParameter.ActualValue; } } private DoubleValue Delta { get { return DeltaParameter.Value; } } public ISingleObjectiveTestFunctionProblemEvaluator Evaluator { get { return EvaluatorParameter.ActualValue; } } private DoubleValue Gamma { get { return GammaParameter.Value; } } public IntValue ImprovementAttempts { get { return ImprovementAttemptsParameter.ActualValue; } } #endregion [StorableConstructor] private SingleObjectiveTestFunctionImprovementOperator(bool deserializing) : base(deserializing) { } private SingleObjectiveTestFunctionImprovementOperator(SingleObjectiveTestFunctionImprovementOperator original, Cloner cloner) : base(original, cloner) { } public SingleObjectiveTestFunctionImprovementOperator() : base() { #region Create parameters Parameters.Add(new ValueParameter("Alpha", new DoubleValue(1.0))); Parameters.Add(new ValueParameter("Beta", new DoubleValue(2.0))); Parameters.Add(new ValueLookupParameter("Bounds", "The lower and upper bounds in each dimension.")); Parameters.Add(new ScopeParameter("CurrentScope", "The current scope that contains the solution to be improved.")); Parameters.Add(new ValueParameter("Delta", new DoubleValue(0.5))); Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions.")); Parameters.Add(new ValueParameter("Gamma", new DoubleValue(0.5))); Parameters.Add(new ValueLookupParameter("ImprovementAttempts", "The number of improvement attempts the operator should perform.", new IntValue(100))); Parameters.Add(new ValueLookupParameter("Solution", "The solution to be improved. This parameter is used for name translation only.")); #endregion } public override IDeepCloneable Clone(Cloner cloner) { return new SingleObjectiveTestFunctionImprovementOperator(this, cloner); } public override IOperation Apply() { RealVector bestSol = CurrentScope.Variables[SolutionParameter.ActualName].Value as RealVector; if (bestSol == null) throw new ArgumentException("Cannot improve solution because it has the wrong type."); var evaluator = Evaluator; double bestSolQuality = evaluator.Evaluate(bestSol); // create perturbed solutions RealVector[] simplex = new RealVector[bestSol.Length]; for (int i = 0; i < simplex.Length; i++) { simplex[i] = bestSol.Clone() as RealVector; simplex[i][i] += 0.1 * (Bounds[0, 1] - Bounds[0, 0]); if (simplex[i][i] > Bounds[0, 1]) simplex[i][i] = Bounds[0, 1]; if (simplex[i][i] < Bounds[0, 0]) simplex[i][i] = Bounds[0, 0]; } // improve solutions for (int i = 0; i < ImprovementAttempts.Value; i++) { // order according to their objective function value Array.Sort(simplex, (x, y) => evaluator.Evaluate(x).CompareTo(evaluator.Evaluate(y))); // calculate centroid RealVector centroid = new RealVector(bestSol.Length); foreach (var vector in simplex) for (int j = 0; j < centroid.Length; j++) centroid[j] += vector[j]; for (int j = 0; j < centroid.Length; j++) centroid[j] /= simplex.Length; // reflection RealVector reflectionPoint = new RealVector(bestSol.Length); for (int j = 0; j < reflectionPoint.Length; j++) reflectionPoint[j] = centroid[j] + Alpha.Value * (centroid[j] - simplex[simplex.Length - 1][j]); double reflectionPointQuality = evaluator.Evaluate(reflectionPoint); if (evaluator.Evaluate(simplex[0]) <= reflectionPointQuality && reflectionPointQuality < evaluator.Evaluate(simplex[simplex.Length - 2])) simplex[simplex.Length - 1] = reflectionPoint; // expansion if (reflectionPointQuality < evaluator.Evaluate(simplex[0])) { RealVector expansionPoint = new RealVector(bestSol.Length); for (int j = 0; j < expansionPoint.Length; j++) expansionPoint[j] = centroid[j] + Beta.Value * (reflectionPoint[j] - centroid[j]); simplex[simplex.Length - 1] = evaluator.Evaluate(expansionPoint) < reflectionPointQuality ? expansionPoint : reflectionPoint; } // contraction if (evaluator.Evaluate(simplex[simplex.Length - 2]) <= reflectionPointQuality && reflectionPointQuality < evaluator.Evaluate(simplex[simplex.Length - 1])) { RealVector outsideContractionPoint = new RealVector(bestSol.Length); for (int j = 0; j < outsideContractionPoint.Length; j++) outsideContractionPoint[j] = centroid[j] + Gamma.Value * (reflectionPoint[j] - centroid[j]); if (evaluator.Evaluate(outsideContractionPoint) <= reflectionPointQuality) { simplex[simplex.Length - 1] = outsideContractionPoint; if (evaluator.Evaluate(reflectionPoint) >= evaluator.Evaluate(simplex[simplex.Length - 1])) { RealVector insideContractionPoint = new RealVector(bestSol.Length); for (int j = 0; j < insideContractionPoint.Length; j++) insideContractionPoint[j] = centroid[j] - Gamma.Value * (reflectionPoint[j] - centroid[j]); if (evaluator.Evaluate(insideContractionPoint) < evaluator.Evaluate(simplex[simplex.Length - 1])) simplex[simplex.Length - 1] = insideContractionPoint; } } } // reduction for (int j = 1; j < simplex.Length; j++) for (int k = 0; k < simplex[j].Length; k++) simplex[j][k] = simplex[0][k] + Delta.Value * (simplex[j][k] - simplex[0][k]); } for (int i = 0; i < simplex[0].Length; i++) { if (simplex[0][i] > Bounds[0, 1]) simplex[0][i] = Bounds[0, 1]; if (simplex[0][i] < Bounds[0, 0]) simplex[0][i] = Bounds[0, 0]; } CurrentScope.Variables[SolutionParameter.ActualName].Value = simplex[0]; CurrentScope.Variables.Add(new Variable("LocalEvaluatedSolutions", ImprovementAttempts)); return base.Apply(); } } }