#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
[Item("Fonseca", "Fonseca and Flemming function from // https://en.wikipedia.org/wiki/Test_functions_for_optimization [30.11.2015]")]
[StorableClass]
public class Fonseca : MultiObjectiveTestFunction {
protected override double[,] GetBounds(int objectives) {
return new double[,] { { -4, 4 } };
}
protected override bool[] GetMaximization(int objecitves) {
return new bool[2];
}
protected override IEnumerable GetOptimalParetoFront(int objectives) {
return ParetoFrontStore.GetParetoFront("Misc.ParetoFronts." + this.ItemName);
}
protected override double GetBestKnownHypervolume(int objectives) {
return Hypervolume.Calculate(GetOptimalParetoFront(objectives), GetReferencePoint(objectives), GetMaximization(objectives));
}
protected override double[] GetReferencePoint(int objectives) {
return new double[] { 11, 11 };
}
[StorableConstructor]
protected Fonseca(bool deserializing) : base(deserializing) { }
protected Fonseca(Fonseca original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new Fonseca(this, cloner);
}
public Fonseca() : base(minimumObjectives: 2, maximumObjectives: 2, minimumSolutionLength: 1, maximumSolutionLength: int.MaxValue) { }
public override double[] Evaluate(RealVector r, int objectives) {
if (objectives != 2) throw new ArgumentException("The Fonseca problem must always have 2 objectives");
double f0 = 0.0, aux = 1.0 / Math.Sqrt(r.Length);
//objective1
for (int i = 0; i < r.Length; i++) {
double d = r[i] - aux;
f0 += d * d;
}
f0 = 1 - Math.Exp(-f0);
//objective2
double f1 = 0.0;
for (int i = 0; i < r.Length; i++) {
double d = r[i] + aux;
f1 += d * d;
}
f1 = 1 - Math.Exp(-f1);
double[] res = { f0, f1 };
return res;
}
}
}