#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.TestFunctions.MultiObjective { [Item("Fonseca", "Fonseca and Flemming function from // https://en.wikipedia.org/wiki/Test_functions_for_optimization [30.11.2015]")] [StorableClass] public class Fonseca : MultiObjectiveTestFunction { protected override double[,] GetBounds(int objectives) { return new double[,] { { -4, 4 } }; } protected override bool[] GetMaximization(int objecitves) { return new bool[2]; } protected override IEnumerable GetOptimalParetoFront(int objectives) { return ParetoFrontStore.GetParetoFront("Misc.ParetoFronts." + this.ItemName); } protected override double GetBestKnownHypervolume(int objectives) { return Hypervolume.Calculate(GetOptimalParetoFront(objectives), GetReferencePoint(objectives), GetMaximization(objectives)); } protected override double[] GetReferencePoint(int objectives) { return new double[] { 11, 11 }; } [StorableConstructor] protected Fonseca(bool deserializing) : base(deserializing) { } protected Fonseca(Fonseca original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new Fonseca(this, cloner); } public Fonseca() : base(minimumObjectives: 2, maximumObjectives: 2, minimumSolutionLength: 1, maximumSolutionLength: int.MaxValue) { } public override double[] Evaluate(RealVector r, int objectives) { if (objectives != 2) throw new ArgumentException("The Fonseca problem must always have 2 objectives"); double f0 = 0.0, aux = 1.0 / Math.Sqrt(r.Length); //objective1 for (int i = 0; i < r.Length; i++) { double d = r[i] - aux; f0 += d * d; } f0 = 1 - Math.Exp(-f0); //objective2 double f1 = 0.0; for (int i = 0; i < r.Length; i++) { double d = r[i] + aux; f1 += d * d; } f1 = 1 - Math.Exp(-f1); double[] res = { f0, f1 }; return res; } } }