#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Problems.Instances; namespace HeuristicLab.Problems.QuadraticAssignment { [Item("Quadratic Assignment Problem", "The Quadratic Assignment Problem (QAP) can be described as the problem of assigning N facilities to N fixed locations such that there is exactly one facility in each location and that the sum of the distances multiplied by the connection strength between the facilities becomes minimal.")] [Creatable("Problems")] [StorableClass] public sealed class QuadraticAssignmentProblem : SingleObjectiveHeuristicOptimizationProblem, IStorableContent, IProblemInstanceConsumer, IProblemInstanceConsumer { public string Filename { get; set; } public static new Image StaticItemImage { get { return HeuristicLab.Common.Resources.VSImageLibrary.Type; } } #region Parameter Properties public IValueParameter> BestKnownSolutionsParameter { get { return (IValueParameter>)Parameters["BestKnownSolutions"]; } } public IValueParameter BestKnownSolutionParameter { get { return (IValueParameter)Parameters["BestKnownSolution"]; } } public IValueParameter WeightsParameter { get { return (IValueParameter)Parameters["Weights"]; } } public IValueParameter DistancesParameter { get { return (IValueParameter)Parameters["Distances"]; } } public IValueParameter LowerBoundParameter { get { return (IValueParameter)Parameters["LowerBound"]; } } public IValueParameter AverageQualityParameter { get { return (IValueParameter)Parameters["AverageQuality"]; } } #endregion #region Properties public ItemSet BestKnownSolutions { get { return BestKnownSolutionsParameter.Value; } set { BestKnownSolutionsParameter.Value = value; } } public Permutation BestKnownSolution { get { return BestKnownSolutionParameter.Value; } set { BestKnownSolutionParameter.Value = value; } } public DoubleMatrix Weights { get { return WeightsParameter.Value; } set { WeightsParameter.Value = value; } } public DoubleMatrix Distances { get { return DistancesParameter.Value; } set { DistancesParameter.Value = value; } } public DoubleValue LowerBound { get { return LowerBoundParameter.Value; } set { LowerBoundParameter.Value = value; } } public DoubleValue AverageQuality { get { return AverageQualityParameter.Value; } set { AverageQualityParameter.Value = value; } } private BestQAPSolutionAnalyzer BestQAPSolutionAnalyzer { get { return Operators.OfType().FirstOrDefault(); } } private QAPAlleleFrequencyAnalyzer QAPAlleleFrequencyAnalyzer { get { return Operators.OfType().FirstOrDefault(); } } private QAPPopulationDiversityAnalyzer QAPPopulationDiversityAnalyzer { get { return Operators.OfType().FirstOrDefault(); } } #endregion [StorableConstructor] private QuadraticAssignmentProblem(bool deserializing) : base(deserializing) { } private QuadraticAssignmentProblem(QuadraticAssignmentProblem original, Cloner cloner) : base(original, cloner) { RegisterEventHandlers(); } public QuadraticAssignmentProblem() : base(new QAPEvaluator(), new RandomPermutationCreator()) { Parameters.Add(new OptionalValueParameter>("BestKnownSolutions", "The list of best known solutions which is updated whenever a new better solution is found or may be the optimal solution if it is known beforehand.", null)); Parameters.Add(new OptionalValueParameter("BestKnownSolution", "The best known solution which is updated whenever a new better solution is found or may be the optimal solution if it is known beforehand.", null)); Parameters.Add(new ValueParameter("Weights", "The strength of the connection between the facilities.", new DoubleMatrix(5, 5))); Parameters.Add(new ValueParameter("Distances", "The distance matrix which can either be specified directly without the coordinates, or can be calculated automatically from the coordinates.", new DoubleMatrix(5, 5))); Parameters.Add(new OptionalValueParameter("LowerBound", "The Gilmore-Lawler lower bound to the solution quality.")); Parameters.Add(new OptionalValueParameter("AverageQuality", "The expected quality of a random solution.")); Maximization.Value = false; MaximizationParameter.Hidden = true; WeightsParameter.GetsCollected = false; Weights = new DoubleMatrix(new double[,] { { 0, 1, 0, 0, 1 }, { 1, 0, 1, 0, 0 }, { 0, 1, 0, 1, 0 }, { 0, 0, 1, 0, 1 }, { 1, 0, 0, 1, 0 } }); DistancesParameter.GetsCollected = false; Distances = new DoubleMatrix(new double[,] { { 0, 360, 582, 582, 360 }, { 360, 0, 360, 582, 582 }, { 582, 360, 0, 360, 582 }, { 582, 582, 360, 0, 360 }, { 360, 582, 582, 360, 0 } }); SolutionCreator.PermutationParameter.ActualName = "Assignment"; ParameterizeSolutionCreator(); ParameterizeEvaluator(); InitializeOperators(); RegisterEventHandlers(); } public override IDeepCloneable Clone(Cloner cloner) { return new QuadraticAssignmentProblem(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey("BestKnownSolutions")) { Parameters.Add(new OptionalValueParameter>("BestKnownSolutions", "The list of best known solutions which is updated whenever a new better solution is found or may be the optimal solution if it is known beforehand.", null)); } else if (Parameters["BestKnownSolutions"].GetType().Equals(typeof(OptionalValueParameter>))) { ItemList list = ((OptionalValueParameter>)Parameters["BestKnownSolutions"]).Value; Parameters.Remove("BestKnownSolutions"); Parameters.Add(new OptionalValueParameter>("BestKnownSolutions", "The list of best known solutions which is updated whenever a new better solution is found or may be the optimal solution if it is known beforehand.", (list != null ? new ItemSet(list) : null))); } if (Parameters.ContainsKey("DistanceMatrix")) { DoubleMatrix d = ((ValueParameter)Parameters["DistanceMatrix"]).Value; Parameters.Remove("DistanceMatrix"); Parameters.Add(new ValueParameter("Distances", "The distance matrix which can either be specified directly without the coordinates, or can be calculated automatically from the coordinates.", d)); } if (!Parameters.ContainsKey("LowerBound")) { Parameters.Add(new OptionalValueParameter("LowerBound", "The Gilmore-Lawler lower bound to the solution quality.")); LowerBound = new DoubleValue(GilmoreLawlerBoundCalculator.CalculateLowerBound(Weights, Distances)); } if (!Parameters.ContainsKey("AverageQuality")) { Parameters.Add(new OptionalValueParameter("AverageQuality", "The expected quality of a random solution.")); AverageQuality = new DoubleValue(ComputeAverageQuality()); } #endregion RegisterEventHandlers(); } #region Events protected override void OnSolutionCreatorChanged() { SolutionCreator.PermutationParameter.ActualNameChanged += new EventHandler(SolutionCreator_PermutationParameter_ActualNameChanged); ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeAnalyzers(); ParameterizeOperators(); base.OnSolutionCreatorChanged(); } protected override void OnEvaluatorChanged() { Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); ParameterizeEvaluator(); ParameterizeAnalyzers(); ParameterizeOperators(); base.OnEvaluatorChanged(); } private void SolutionCreator_PermutationParameter_ActualNameChanged(object sender, EventArgs e) { ParameterizeEvaluator(); ParameterizeAnalyzers(); ParameterizeOperators(); } private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) { ParameterizeAnalyzers(); ParameterizeOperators(); } private void WeightsParameter_ValueChanged(object sender, EventArgs e) { Weights.RowsChanged += new EventHandler(Weights_RowsChanged); Weights.ColumnsChanged += new EventHandler(Weights_ColumnsChanged); Weights.ToStringChanged += new EventHandler(Weights_ToStringChanged); ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeOperators(); AdjustDistanceMatrix(); } private void Weights_RowsChanged(object sender, EventArgs e) { if (Weights.Rows != Weights.Columns) ((IStringConvertibleMatrix)Weights).Columns = Weights.Rows; else { ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeOperators(); AdjustDistanceMatrix(); } } private void Weights_ColumnsChanged(object sender, EventArgs e) { if (Weights.Rows != Weights.Columns) ((IStringConvertibleMatrix)Weights).Rows = Weights.Columns; else { ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeOperators(); AdjustDistanceMatrix(); } } private void Weights_ToStringChanged(object sender, EventArgs e) { UpdateParameterValues(); } private void DistancesParameter_ValueChanged(object sender, EventArgs e) { Distances.RowsChanged += new EventHandler(Distances_RowsChanged); Distances.ColumnsChanged += new EventHandler(Distances_ColumnsChanged); Distances.ToStringChanged += new EventHandler(Distances_ToStringChanged); ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeOperators(); AdjustWeightsMatrix(); } private void Distances_RowsChanged(object sender, EventArgs e) { if (Distances.Rows != Distances.Columns) ((IStringConvertibleMatrix)Distances).Columns = Distances.Rows; else { ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeOperators(); AdjustWeightsMatrix(); } } private void Distances_ColumnsChanged(object sender, EventArgs e) { if (Distances.Rows != Distances.Columns) ((IStringConvertibleMatrix)Distances).Rows = Distances.Columns; else { ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeOperators(); AdjustWeightsMatrix(); } } private void Distances_ToStringChanged(object sender, EventArgs e) { UpdateParameterValues(); } #endregion private void RegisterEventHandlers() { SolutionCreator.PermutationParameter.ActualNameChanged += new EventHandler(SolutionCreator_PermutationParameter_ActualNameChanged); Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); WeightsParameter.ValueChanged += new EventHandler(WeightsParameter_ValueChanged); Weights.RowsChanged += new EventHandler(Weights_RowsChanged); Weights.ColumnsChanged += new EventHandler(Weights_ColumnsChanged); Weights.ToStringChanged += new EventHandler(Weights_ToStringChanged); DistancesParameter.ValueChanged += new EventHandler(DistancesParameter_ValueChanged); Distances.RowsChanged += new EventHandler(Distances_RowsChanged); Distances.ColumnsChanged += new EventHandler(Distances_ColumnsChanged); Distances.ToStringChanged += new EventHandler(Distances_ToStringChanged); } #region Helpers private void InitializeOperators() { var defaultOperators = new HashSet(new IPermutationOperator[] { new PartiallyMatchedCrossover(), new Swap2Manipulator(), new ExhaustiveSwap2MoveGenerator() }); Operators.AddRange(defaultOperators); Operators.AddRange(ApplicationManager.Manager.GetInstances().Except(defaultOperators, new TypeEqualityComparer())); Operators.RemoveAll(x => x is ISingleObjectiveMoveEvaluator); Operators.AddRange(ApplicationManager.Manager.GetInstances()); Operators.Add(new BestQAPSolutionAnalyzer()); Operators.Add(new QAPAlleleFrequencyAnalyzer()); Operators.Add(new QAPPopulationDiversityAnalyzer()); Operators.Add(new QAPExhaustiveInsertionLocalImprovement()); Operators.Add(new QAPExhaustiveInversionLocalImprovement()); Operators.Add(new QAPStochasticScrambleLocalImprovement()); Operators.Add(new QAPExhaustiveSwap2LocalImprovement()); Operators.Add(new QAPSimilarityCalculator()); ParameterizeAnalyzers(); ParameterizeOperators(); } private void ParameterizeSolutionCreator() { if (SolutionCreator != null) { SolutionCreator.PermutationTypeParameter.Value = new PermutationType(PermutationTypes.Absolute); SolutionCreator.LengthParameter.Value = new IntValue(Weights.Rows); } } private void ParameterizeEvaluator() { if (Evaluator != null) { Evaluator.PermutationParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; Evaluator.DistancesParameter.ActualName = DistancesParameter.Name; Evaluator.WeightsParameter.ActualName = WeightsParameter.Name; } } private void ParameterizeAnalyzers() { if (BestQAPSolutionAnalyzer != null) { BestQAPSolutionAnalyzer.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName; BestQAPSolutionAnalyzer.DistancesParameter.ActualName = DistancesParameter.Name; BestQAPSolutionAnalyzer.WeightsParameter.ActualName = WeightsParameter.Name; BestQAPSolutionAnalyzer.PermutationParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; BestQAPSolutionAnalyzer.ResultsParameter.ActualName = "Results"; BestQAPSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name; BestQAPSolutionAnalyzer.BestKnownSolutionsParameter.ActualName = BestKnownSolutionsParameter.Name; BestQAPSolutionAnalyzer.MaximizationParameter.ActualName = MaximizationParameter.Name; } if (QAPAlleleFrequencyAnalyzer != null) { QAPAlleleFrequencyAnalyzer.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName; QAPAlleleFrequencyAnalyzer.BestKnownSolutionParameter.ActualName = BestKnownSolutionParameter.Name; QAPAlleleFrequencyAnalyzer.DistancesParameter.ActualName = DistancesParameter.Name; QAPAlleleFrequencyAnalyzer.MaximizationParameter.ActualName = MaximizationParameter.Name; QAPAlleleFrequencyAnalyzer.ResultsParameter.ActualName = "Results"; QAPAlleleFrequencyAnalyzer.SolutionParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; QAPAlleleFrequencyAnalyzer.WeightsParameter.ActualName = WeightsParameter.Name; } if (QAPPopulationDiversityAnalyzer != null) { QAPPopulationDiversityAnalyzer.MaximizationParameter.ActualName = MaximizationParameter.Name; QAPPopulationDiversityAnalyzer.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName; QAPPopulationDiversityAnalyzer.ResultsParameter.ActualName = "Results"; QAPPopulationDiversityAnalyzer.SolutionParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; } } private void ParameterizeOperators() { foreach (IPermutationCrossover op in Operators.OfType()) { op.ParentsParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; op.ChildParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; } foreach (IPermutationManipulator op in Operators.OfType()) { op.PermutationParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; } foreach (IPermutationMoveOperator op in Operators.OfType()) { op.PermutationParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; } if (Operators.OfType().Any()) { if (Operators.OfType().OfType().Any()) { string inversionMove = Operators.OfType().OfType().First().InversionMoveParameter.ActualName; foreach (IPermutationInversionMoveOperator op in Operators.OfType()) op.InversionMoveParameter.ActualName = inversionMove; } if (Operators.OfType().OfType().Any()) { string translocationMove = Operators.OfType().OfType().First().TranslocationMoveParameter.ActualName; foreach (IPermutationTranslocationMoveOperator op in Operators.OfType()) op.TranslocationMoveParameter.ActualName = translocationMove; } if (Operators.OfType().OfType().Any()) { string swapMove = Operators.OfType().OfType().First().Swap2MoveParameter.ActualName; foreach (IPermutationSwap2MoveOperator op in Operators.OfType()) { op.Swap2MoveParameter.ActualName = swapMove; } } } foreach (var op in Operators.OfType()) op.PermutationParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; QAPExhaustiveSwap2LocalImprovement localOpt = Operators.OfType().SingleOrDefault(); if (localOpt != null) { localOpt.AssignmentParameter.ActualName = SolutionCreator.PermutationParameter.ActualName; localOpt.DistancesParameter.ActualName = DistancesParameter.Name; localOpt.MaximizationParameter.ActualName = MaximizationParameter.Name; localOpt.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName; localOpt.WeightsParameter.ActualName = WeightsParameter.Name; } QAPSimilarityCalculator similarityCalculator = Operators.OfType().SingleOrDefault(); if (similarityCalculator != null) { similarityCalculator.SolutionVariableName = SolutionCreator.PermutationParameter.ActualName; similarityCalculator.QualityVariableName = Evaluator.QualityParameter.ActualName; } } private void AdjustDistanceMatrix() { if (Distances.Rows != Weights.Rows || Distances.Columns != Weights.Columns) { ((IStringConvertibleMatrix)Distances).Rows = Weights.Rows; } } private void AdjustWeightsMatrix() { if (Weights.Rows != Distances.Rows || Weights.Columns != Distances.Columns) { ((IStringConvertibleMatrix)Weights).Rows = Distances.Rows; } } private void UpdateParameterValues() { Permutation lbSolution; // calculate the optimum of a LAP relaxation and use it as lower bound of our QAP LowerBound = new DoubleValue(GilmoreLawlerBoundCalculator.CalculateLowerBound(Weights, Distances, out lbSolution)); // evalute the LAP optimal solution as if it was a QAP solution var lbSolutionQuality = QAPEvaluator.Apply(lbSolution, Weights, Distances); // in case both qualities are the same it means that the LAP optimum is also a QAP optimum if (LowerBound.Value.IsAlmost(lbSolutionQuality)) { BestKnownSolution = lbSolution; BestKnownQuality = new DoubleValue(LowerBound.Value); } AverageQuality = new DoubleValue(ComputeAverageQuality()); } private double ComputeAverageQuality() { double rt = 0, rd = 0, wt = 0, wd = 0; int n = Weights.Rows; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { if (i == j) { rd += Distances[i, i]; wd += Weights[i, i]; } else { rt += Distances[i, j]; wt += Weights[i, j]; } } return rt * wt / (n * (n - 1)) + rd * wd / n; } #endregion public void Load(QAPData data) { var weights = new DoubleMatrix(data.Weights); var distances = new DoubleMatrix(data.Distances); Name = data.Name; Description = data.Description; Load(weights, distances); if (data.BestKnownQuality.HasValue) BestKnownQuality = new DoubleValue(data.BestKnownQuality.Value); EvaluateAndLoadAssignment(data.BestKnownAssignment); OnReset(); } public void Load(TSPData data) { if (data.Dimension > 1000) throw new System.IO.InvalidDataException("Instances with more than 1000 customers are not supported by the QAP."); var weights = new DoubleMatrix(data.Dimension, data.Dimension); for (int i = 0; i < data.Dimension; i++) weights[i, (i + 1) % data.Dimension] = 1; var distances = new DoubleMatrix(data.GetDistanceMatrix()); Name = data.Name; Description = data.Description; Load(weights, distances); if (data.BestKnownQuality.HasValue) BestKnownQuality = new DoubleValue(data.BestKnownQuality.Value); EvaluateAndLoadAssignment(data.BestKnownTour); OnReset(); } public void Load(DoubleMatrix weights, DoubleMatrix distances) { if (weights == null || weights.Rows == 0) throw new System.IO.InvalidDataException("The given instance does not contain weights!"); if (weights.Rows != weights.Columns) throw new System.IO.InvalidDataException("The weights matrix is not a square matrix!"); if (distances == null || distances.Rows == 0) throw new System.IO.InvalidDataException("The given instance does not contain distances!"); if (distances.Rows != distances.Columns) throw new System.IO.InvalidDataException("The distances matrix is not a square matrix!"); if (weights.Rows != distances.Columns) throw new System.IO.InvalidDataException("The weights matrix and the distance matrix are not of equal size!"); Weights = weights; Distances = distances; BestKnownQuality = null; BestKnownSolution = null; BestKnownSolutions = null; UpdateParameterValues(); } public void EvaluateAndLoadAssignment(int[] assignment) { if (assignment == null || assignment.Length == 0) return; var vector = new Permutation(PermutationTypes.Absolute, assignment); var result = QAPEvaluator.Apply(vector, Weights, Distances); BestKnownQuality = new DoubleValue(result); BestKnownSolution = vector; BestKnownSolutions = new ItemSet(); BestKnownSolutions.Add((Permutation)vector.Clone()); } } }