[13412] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13412] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[13470] | 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[13412] | 24 | using HeuristicLab.Common;
|
---|
[12191] | 25 | using HeuristicLab.Core;
|
---|
[13412] | 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
[13470] | 28 | using HeuristicLab.Optimization;
|
---|
[12191] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.PTSP {
|
---|
[13412] | 32 | [Item("Analytical Probabilistic Traveling Salesman Problem (PTSP)", "Represents a probabilistic traveling salesman problem where the expected tour length is calculated exactly.")]
|
---|
| 33 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
|
---|
[12191] | 34 | [StorableClass]
|
---|
[13412] | 35 | public sealed class AnalyticalProbabilisticTravelingSalesmanProblem : ProbabilisticTravelingSalesmanProblem {
|
---|
[12191] | 36 |
|
---|
| 37 | [StorableConstructor]
|
---|
| 38 | private AnalyticalProbabilisticTravelingSalesmanProblem(bool deserializing) : base(deserializing) { }
|
---|
[13412] | 39 | private AnalyticalProbabilisticTravelingSalesmanProblem(AnalyticalProbabilisticTravelingSalesmanProblem original, Cloner cloner) : base(original, cloner) { }
|
---|
| 40 | public AnalyticalProbabilisticTravelingSalesmanProblem() {
|
---|
| 41 | Operators.Add(new BestPTSPSolutionAnalyzer());
|
---|
[13470] | 42 |
|
---|
| 43 | Operators.Add(new PTSPAnalyticalInversionMoveEvaluator());
|
---|
| 44 | Operators.Add(new PTSPAnalyticalInsertionMoveEvaluator());
|
---|
| 45 | Operators.Add(new PTSPAnalyticalInversionLocalImprovement());
|
---|
| 46 | Operators.Add(new PTSPAnalyticalInsertionLocalImprovement());
|
---|
| 47 | Operators.Add(new PTSPAnalyticalTwoPointFiveLocalImprovement());
|
---|
| 48 |
|
---|
| 49 | Operators.Add(new ExhaustiveTwoPointFiveMoveGenerator());
|
---|
| 50 | Operators.Add(new StochasticTwoPointFiveMultiMoveGenerator());
|
---|
| 51 | Operators.Add(new StochasticTwoPointFiveSingleMoveGenerator());
|
---|
| 52 | Operators.Add(new TwoPointFiveMoveMaker());
|
---|
| 53 | Operators.Add(new PTSPAnalyticalTwoPointFiveMoveEvaluator());
|
---|
| 54 |
|
---|
| 55 | Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator);
|
---|
| 56 | Operators.RemoveAll(x => x is SingleObjectiveMoveMaker);
|
---|
| 57 | Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator);
|
---|
| 58 |
|
---|
| 59 | Encoding.ConfigureOperators(Operators.OfType<IOperator>());
|
---|
| 60 | foreach (var twopointfiveMoveOperator in Operators.OfType<ITwoPointFiveMoveOperator>()) {
|
---|
| 61 | twopointfiveMoveOperator.TwoPointFiveMoveParameter.ActualName = "Permutation.TwoPointFiveMove";
|
---|
| 62 | }
|
---|
[12191] | 63 | }
|
---|
| 64 |
|
---|
| 65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 66 | return new AnalyticalProbabilisticTravelingSalesmanProblem(this, cloner);
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[13412] | 69 | public override double Evaluate(Permutation tour, IRandom random) {
|
---|
[13470] | 70 | // abeham: Cache in local variable for performance reasons
|
---|
| 71 | var distanceMatrix = DistanceMatrix;
|
---|
| 72 | return Evaluate(tour, (a, b) => distanceMatrix[a, b], Probabilities);
|
---|
[12191] | 73 | }
|
---|
| 74 |
|
---|
[13470] | 75 | public static double Evaluate(Permutation tour, Func<int, int, double> distance, DoubleArray probabilities) {
|
---|
[12269] | 76 | // Analytical evaluation
|
---|
[13412] | 77 | var firstSum = 0.0;
|
---|
[13470] | 78 | for (var i = 0; i < tour.Length - 1; i++) {
|
---|
[13412] | 79 | for (var j = i + 1; j < tour.Length; j++) {
|
---|
[13470] | 80 | var prod1 = distance(tour[i], tour[j]) * probabilities[tour[i]] * probabilities[tour[j]];
|
---|
[13412] | 81 | for (var k = i + 1; k < j; k++) {
|
---|
[13470] | 82 | prod1 = prod1 * (1 - probabilities[tour[k]]);
|
---|
[12269] | 83 | }
|
---|
[13470] | 84 | firstSum += prod1;
|
---|
[12269] | 85 | }
|
---|
| 86 | }
|
---|
[13412] | 87 | var secondSum = 0.0;
|
---|
| 88 | for (var j = 0; j < tour.Length; j++) {
|
---|
| 89 | for (var i = 0; i < j; i++) {
|
---|
[13470] | 90 | var prod2 = distance(tour[j], tour[i]) * probabilities[tour[i]] * probabilities[tour[j]];
|
---|
[13412] | 91 | for (var k = j + 1; k < tour.Length; k++) {
|
---|
[13470] | 92 | prod2 = prod2 * (1 - probabilities[tour[k]]);
|
---|
[12269] | 93 | }
|
---|
[13412] | 94 | for (var k = 0; k < i; k++) {
|
---|
[13470] | 95 | prod2 = prod2 * (1 - probabilities[tour[k]]);
|
---|
[12269] | 96 | }
|
---|
[13470] | 97 | secondSum += prod2;
|
---|
[12269] | 98 | }
|
---|
| 99 | }
|
---|
| 100 | return firstSum + secondSum;
|
---|
| 101 | }
|
---|
[13470] | 102 |
|
---|
| 103 | public static double Evaluate(Permutation tour, DistanceMatrix distanceMatrix, DoubleArray probabilities) {
|
---|
| 104 | return Evaluate(tour, (a, b) => distanceMatrix[a, b], probabilities);
|
---|
| 105 | }
|
---|
[12191] | 106 | }
|
---|
| 107 | }
|
---|