#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class RationalPolynomialThreeDimensional : ArtificialRegressionDataDescriptor { public override string Name { get { return "Vladislavleva-5 F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))"; } } public override string Description { get { return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine + "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))" + Environment.NewLine + "Training Data: 300 points X1, X3 = Rand(0.05, 2), X2 = Rand(1, 2)" + Environment.NewLine + "Test Data: (14*12*14) points X1, X3 = (-0.05:0.15:2.05), X2 = (0.95:0.1:2.05)" + Environment.NewLine + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps"; } } protected override string TargetVariable { get { return "Y"; } } protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 300; } } protected override int TestPartitionStart { get { return 300; } } protected override int TestPartitionEnd { get { return 300 + (15*12*15); } } protected override List> GenerateValues() { List> data = new List>(); int n = 300; data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList()); data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 1, 2).ToList()); data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList()); List> testData = new List>() { ValueGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList(), ValueGenerator.GenerateSteps( 0.95m, 2.05m, 0.1m).Select(v => (double)v).ToList(), ValueGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList() }; var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data[i].AddRange(combinations[i]); } double x1, x2, x3; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x1 = data[0][i]; x2 = data[1][i]; x3 = data[2][i]; results.Add(30 * ((x1 - 1) * (x3 - 1)) / (Math.Pow(x2, 2) * (x1 - 10))); } data.Add(results); return data; } } }