#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class BreimanOne : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Breiman - I"; } }
public override string Description {
get {
return "Paper: Classification and Regression Trees" + Environment.NewLine
+ "Authors: Leo Breiman, Jerome H. Friedman, Charles J. Stone and R. A. Olson";
}
}
protected override string TargetVariable { get { return "Y"; } }
protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 5001; } }
protected override int TestPartitionStart { get { return 5001; } }
protected override int TestPartitionEnd { get { return 10001; } }
protected static FastRandom rand = new FastRandom();
protected override List> GenerateValues() {
List> data = new List>();
List values = new List() { -1, 1 };
data.Add(GenerateUniformIntegerDistribution(values, TestPartitionEnd));
values.Add(0);
for (int i = 0; i < AllowedInputVariables.Count() - 1; i++) {
data.Add(GenerateUniformIntegerDistribution(values, TestPartitionEnd));
}
double x1, x2, x3, x4, x5, x6, x7;
double f;
List results = new List();
double sigma = Math.Sqrt(2);
for (int i = 0; i < data[0].Count; i++) {
x1 = data[0][i];
x2 = data[1][i];
x3 = data[2][i];
x4 = data[3][i];
x5 = data[4][i];
x6 = data[5][i];
x7 = data[6][i];
if (x1.Equals(1))
f = 3 + 3 * x2 + 2 * x3 + x4;
else
f = -3 + 3 * x5 + 2 * x6 + x7;
results.Add(f + NormalDistributedRandom.NextDouble(rand, 0, sigma));
}
data.Add(results);
return data;
}
private List GenerateUniformIntegerDistribution(List classes, int amount) {
List values = new List();
for (int i = 0; i < amount; i++) {
values.Add(classes[rand.Next(0, classes.Count)]);
}
return values;
}
}
}