#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class FluidDynamics : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Spinning cylinder flow Ψ = V_∞ r sin(θ) (1 - R²/r²) + Γ/(2 π) ln(r/R)"; } }
public override string Description {
get {
return "A full description of this problem instance is given in: " + Environment.NewLine +
"Chen Chen, Changtong Luo, Zonglin Jiang, \"A multilevel block building algorithm for fast " +
"modeling generalized separable systems\", Expert Systems with Applications, Volume 109, 2018, " +
"Pages 25-34 https://doi.org/10.1016/j.eswa.2018.05.021. " + Environment.NewLine +
"Function: Ψ = V_∞ r sin(θ) (1 - R²/r²) + Γ/(2 π) ln(r/R)" + Environment.NewLine +
"with uniform stream velocity V_∞ ∈ [60 m/s, 65 m/s]," + Environment.NewLine +
"angle for polar coordinate vector field θ ∈ [30°, 40°]," + Environment.NewLine +
"radius for polar coordinate vector field r ∈ [0.5m, 0.8m]," + Environment.NewLine +
"radius of cylinder R ∈ [0.2m, 0.5m]," + Environment.NewLine +
"vortex strength (induced by spinning) Γ ∈ [5 m²/s, 10 m²/s]" + Environment.NewLine +
"Note: the definition deviates from the definition used in the source above because here we have r > R meaning we want to calculate the flow _outside_ of the cylinder.";
}
}
protected override string TargetVariable { get { return "Ψ"; } }
protected override string[] VariableNames { get { return new string[] { "V_∞", "θ", "r", "R", "Γ", "Ψ", "Ψ_noise" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "V_∞", "θ", "r", "R", "Γ" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 100; } }
protected override int TestPartitionStart { get { return 100; } }
protected override int TestPartitionEnd { get { return 200; } }
public int Seed { get; private set; }
public FluidDynamics() : this((int)System.DateTime.Now.Ticks) { }
public FluidDynamics(int seed) {
Seed = seed;
}
protected override List> GenerateValues() {
var rand = new MersenneTwister((uint)Seed);
List> data = new List>();
var V_inf = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 60.0, 65.0).ToList();
var th = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 30.0, 40.0).ToList();
var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 0.8).ToList();
var R = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.2, 0.5).ToList();
var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5, 10).ToList();
var Psi = new List();
var Psi_noise = new List();
data.Add(V_inf);
data.Add(th);
data.Add(r);
data.Add(R);
data.Add(G);
data.Add(Psi);
data.Add(Psi_noise);
for (int i = 0; i < V_inf.Count; i++) {
var th_rad = Math.PI * th[i] / 180.0;
double Psi_i = V_inf[i] * r[i] * Math.Sin(th_rad) * (1 - (R[i] * R[i]) / (r[i] * r[i])) +
(G[i] / (2 * Math.PI)) * Math.Log(r[i] / R[i]);
Psi.Add(Psi_i);
}
var sigma_noise = 0.05 * Psi.StandardDeviationPop();
Psi_noise.AddRange(Psi.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
return data;
}
}
}