#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using System.IO.Compression;
using System.Linq;
using HeuristicLab.Data;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class PennMLRegressionInstanceProvider : ResourceRegressionInstanceProvider {
public override string Name {
get { return "PennML Regression Problems"; }
}
public override string Description {
get { return "A set of datasets used for benchmarking symbolic regression algorithms."; }
}
public override Uri WebLink {
get { return new Uri("https://github.com/EpistasisLab/penn-ml-benchmarks"); }
}
public override string ReferencePublication {
get { return "Patryk Orzechowski, William La Cava, Jason H. Moore - Where are we now? A large benchmark study of recent symbolic regression methods"; }
}
protected override string FileName {
get { return "PennML"; }
}
// the reference publication uses 75% of the samples in each of the datasets for training and the remaining 25% for testing
private const double trainTestSplit = 0.75;
public override IEnumerable GetDataDescriptors() {
var instanceArchiveName = GetResourceName(FileName + @"\.zip");
using (var instancesZipFile = new ZipArchive(GetType().Assembly.GetManifestResourceStream(instanceArchiveName), ZipArchiveMode.Read)) {
foreach (var entry in instancesZipFile.Entries) {
NumberFormatInfo numberFormat;
DateTimeFormatInfo dateFormat;
char separator;
using (var stream = entry.Open()) {
// the method below disposes the stream
TableFileParser.DetermineFileFormat(stream, out numberFormat, out dateFormat, out separator);
}
using (var stream = entry.Open()) {
using (var reader = new StreamReader(stream)) {
var header = reader.ReadLine(); // read the first line
// by convention each dataset from the PennML collection reserves the last column for the target
var variableNames = header.Split(separator);
var allowedInputVariables = variableNames.Take(variableNames.Length - 1);
var target = variableNames.Last();
// count lines
int lines = 0; while (reader.ReadLine() != null) lines++;
var trainEnd = (int)Math.Round(lines * trainTestSplit);
var trainRange = new IntRange(0, trainEnd);
var testRange = new IntRange(trainEnd, lines);
var descriptor = new PennMLRegressionDataDescriptor(entry.Name, variableNames, allowedInputVariables, target, trainRange, testRange);
yield return descriptor;
}
}
}
}
}
}
}