#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class KornsFunctionSix : ArtificialRegressionDataDescriptor { public override string Name { get { return "Korns 6 y = 1.3 + (0.13 * sqrt(X0))"; } } public override string Description { get { return "Paper: Accuracy in Symbolic Regression" + Environment.NewLine + "Authors: Michael F. Korns" + Environment.NewLine + "Function: y = 1.3 + (0.13 * sqrt(X0))" + Environment.NewLine + "Binary Operators: +, -, *, % (protected division)" + Environment.NewLine + "Unary Operators: sqrt, square, cube, cos, sin, tan, tanh, ln(|x|) (protected log), exp" + Environment.NewLine + "Constants: random finit 64-bit IEEE double" + Environment.NewLine + "\"Our testing regimen uses only statistical best practices out-of-sample testing techniques. " + "We test each of the test cases on matrices of 10000 rows by 1 to 5 columns with no noise. " + "For each test a training matrix is filled with random numbers between -50 and +50. The test case " + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"" + Environment.NewLine + Environment.NewLine + "Note: Because of the square root only non-negatic values are created for the input variables!"; } } protected override string TargetVariable { get { return "Y"; } } protected override string[] VariableNames { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 10000; } } protected override int TestPartitionStart { get { return 10000; } } protected override int TestPartitionEnd { get { return 20000; } } protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); double x0; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x0 = data[0][i]; results.Add(1.3 + (0.13 * Math.Sqrt(x0))); } data.Add(results); return data; } } }