#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.DataAnalysis {
public class OnlineMeanAndVarianceCalculator : DeepCloneable {
private double m_oldM, m_newM, m_oldS, m_newS;
private int n;
private OnlineCalculatorError varianceErrorState;
public OnlineCalculatorError VarianceErrorState {
get { return varianceErrorState; }
}
public double Variance {
get {
return (n > 1) ? m_newS / (n - 1) : 0.0;
}
}
private OnlineCalculatorError errorState;
public OnlineCalculatorError PopulationVarianceErrorState {
get { return errorState; }
}
public double PopulationVariance {
get {
return (n > 0) ? m_newS / n : 0.0;
}
}
public OnlineCalculatorError MeanErrorState {
get { return errorState; }
}
public double Mean {
get {
return (n > 0) ? m_newM : 0.0;
}
}
public int Count {
get { return n; }
}
public OnlineMeanAndVarianceCalculator() {
Reset();
}
protected OnlineMeanAndVarianceCalculator(OnlineMeanAndVarianceCalculator original, Cloner cloner = null)
: base(original, cloner) {
m_oldS = original.m_oldS;
m_oldM = original.m_oldM;
m_newS = original.m_newS;
m_newM = original.m_newM;
n = original.n;
errorState = original.errorState;
varianceErrorState = original.varianceErrorState;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OnlineMeanAndVarianceCalculator(this, cloner);
}
public void Reset() {
n = 0;
errorState = OnlineCalculatorError.InsufficientElementsAdded;
varianceErrorState = OnlineCalculatorError.InsufficientElementsAdded;
}
public void Add(double x) {
if (double.IsNaN(x) || double.IsInfinity(x) || x > 1E13 || x < -1E13 || (errorState & OnlineCalculatorError.InvalidValueAdded) > 0) {
errorState = errorState | OnlineCalculatorError.InvalidValueAdded;
varianceErrorState = varianceErrorState | OnlineCalculatorError.InvalidValueAdded;
} else {
n++;
// See Knuth TAOCP vol 2, 3rd edition, page 232
if (n == 1) {
m_oldM = m_newM = x;
m_oldS = 0.0;
errorState = errorState & (~OnlineCalculatorError.InsufficientElementsAdded); // n >= 1
} else {
varianceErrorState = varianceErrorState & (~OnlineCalculatorError.InsufficientElementsAdded); // n >= 2
m_newM = m_oldM + (x - m_oldM) / n;
m_newS = m_oldS + (x - m_oldM) * (x - m_newM);
// set up for next iteration
m_oldM = m_newM;
m_oldS = m_newS;
}
}
}
public static void Calculate(IEnumerable x, out double mean, out double variance, out OnlineCalculatorError meanErrorState, out OnlineCalculatorError varianceErrorState) {
OnlineMeanAndVarianceCalculator meanAndVarianceCalculator = new OnlineMeanAndVarianceCalculator();
foreach (double xi in x) {
meanAndVarianceCalculator.Add(xi);
}
mean = meanAndVarianceCalculator.Mean;
variance = meanAndVarianceCalculator.Variance;
meanErrorState = meanAndVarianceCalculator.MeanErrorState;
varianceErrorState = meanAndVarianceCalculator.VarianceErrorState;
}
}
}